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Introduction

@ A growing number of mobile devices users.
@ An increasing demand for predicting a driver's destination.

@ Destination prediction is to predict the destination of a

trip given a partial passed trajectory.




Applications

Several applications can benefit from destination prediction.
@ Location-based advertising.
@ Route recommendation.
e Navigation system.

@ Study the dynamic flow of the traffic.



Existing approach-Markov Chain Models

@ Hard to describe the behavior of trajectory.
@ High order model is hard to train.

e Modified approach[1]: only retain the random walks that
are not much longer than the shortest path.
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Top-k destinations

Several previous work[1-5] used probabilistic inference to

compute and return the top-k destinations.
@ does not consider destinations' geographic locations.

@ The returned top-k places may close to each other, and
ignore some faraway places with similar probabilities.
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Observation 1

If the prefixes of the trajectories are similar, the distributions
of the geographic locations of their destinations also tend to
be similar.
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Observation 2
The destinations of trajectories with similar prefixes and length

are clustered.
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Framework

The problem now transforms into finding similar historical

trajectories, and predicting destination using them.
@ Offline stage: Build the index using BPR quadtree and
Minhash index for quickly finding similar trajectories.

@ Online stage: Given the partial trajectory, predict the
destinations.
» Search the candidate trajectories from the index.
» Classify the similar trajectories into different groups
» In each group, cluster the destinations.

» The centers of all the clusters are returned.
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Map Representation

Divide the map into:
@ cells according to the historical destination density(leaves
in the BPR Quadtree).
@ cells in the uniform grids.
BPR Quadtree: a quadtree, recursively split into 4 blocks, can

adapt to various densities of different regions.

Trajectories can be represented by a sequence of cells.
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Trajectory Similarity

dsim.(7,,T;) = 1 — Maxm(7,,T})/clen(T},).

A cell trajectory T, is similar to another cell trajectory T , if
dsim.(7,,T3) < 0.
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Index construction

Minwise hashing: a class of Locality-sensitive hashing (LSH),
used to quickly identify similar sets(Jaccard similarity).

@ Traverse the BPR
Quadtree to every
leaf.

@ Build a Minhash
index for each leaf.

@ Insert trajectories

(whose start cell is

The start cell of

. . the trajectories
c) into the index I, es

using a set of

uniform cells.
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Candidate Trajectory Retrieval

@ Input: The partial cell trajectory, T, = q1,q2, - , q.
@ Output: Candidate Trajectories CT .
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Candidate Trajectory Retrieval

@ Input: The partial cell trajectory, T, = q1,q2,- - , q.
@ Output: Candidate Trajectories CT .
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Prediction Algorithms

@ Calculate the real similarity of the partial trajectory and

the candidate trajectories.

@ The predicted destinations can then be calculated using

Observation 2.

@ Instead of Choosing the most frequent destinations
(FREQ), choose the cluster centers(CLUSTER).
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Experimental Evaluation

Real dataset:

@ GPS points of 12000 taxis, 3 months, in the urban area
about 50km x 50km in Beijing.

@ Preprocess the data to get the trajectories.
@ Test set: randomly pick 1,000 trajectories.

@ Cut the test trajectories into different length. The
complement of a trajectory is §.

@ The number of returned destinations k.
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Compared algorithms

Naive : Predict the last cell of the partial trajectory as

the destination.

@ RF : Random Forests.

SUBSYN[1]: The modified Markov Chain approach, use

the same information as ours.

CLUSTER is the diameter cluster based algorithm, and

FREQ is the destination frequency based algorithm.

CLUSTER (k = 1) is an extension prediction algorithm.
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Accuracy Performance
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Figure: Average minimum error. (e = 500m, 6 = 0.15, r = 500m).

AvgMinErr = & 37 | MinErr(q;), ¢; € Q, where
MinErr(qj) = minie[k] L1<dpj7;7 dr)
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Accuracy Performance
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Figure: Distance-accuracy curve of k = 3 predicted destinations
(e =500m, 0 = 0.15, r = 500m).

DAV()\) is the percentage of queries for which the error is no
more than A.
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