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Introduction

A growing number of mobile devices users.

An increasing demand for predicting a driver’s destination.

Destination prediction is to predict the destination of a

trip given a partial passed trajectory.
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Applications

Several applications can benefit from destination prediction.

Location-based advertising.

Route recommendation.

Navigation system.

Study the dynamic flow of the traffic.
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Existing approach-Markov Chain Models

Hard to describe the behavior of trajectory.

High order model is hard to train.

Modified approach[1]: only retain the random walks that

are not much longer than the shortest path.
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Top-k destinations
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Several previous work[1-5] used probabilistic inference to

compute and return the top-k destinations.

does not consider destinations’ geographic locations.

The returned top-k places may close to each other, and

ignore some faraway places with similar probabilities.

7 / 26



Talk Structure

1 Introduction

2 Observations and Framework

3 Index Construction

4 Destinaiton Prediction

5 Evaluation

8 / 26



Observation 1

(a) (b) (c)

Observation 1

If the prefixes of the trajectories are similar, the distributions

of the geographic locations of their destinations also tend to

be similar.
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Observation 2

(a) (b) (c)

Observation 2

The destinations of trajectories with similar prefixes and length

are clustered.
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Framework

The problem now transforms into finding similar historical

trajectories, and predicting destination using them.

Offline stage: Build the index using BPR quadtree and

Minhash index for quickly finding similar trajectories.

Online stage: Given the partial trajectory, predict the

destinations.

I Search the candidate trajectories from the index.

I Classify the similar trajectories into different groups

I In each group, cluster the destinations.

I The centers of all the clusters are returned.
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Map Representation

Divide the map into:

cells according to the historical destination density(leaves

in the BPR Quadtree).

cells in the uniform grids.

BPR Quadtree: a quadtree, recursively split into 4 blocks, can

adapt to various densities of different regions.

Trajectories can be represented by a sequence of cells.
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Trajectory Similarity

dsimε(Ta, Tb) = 1−Maxmε(Ta, Tb)/clen(Ta).

A cell trajectory Ta is similar to another cell trajectory Tb , if

dsimε(Ta, Tb) ≤ θ.
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Index construction

Minwise hashing: a class of Locality-sensitive hashing (LSH),

used to quickly identify similar sets(Jaccard similarity).

Traverse the BPR

Quadtree to every

leaf.

Build a Minhash

index for each leaf.

Insert trajectories

(whose start cell is

c) into the index Ic

using a set of

uniform cells.
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Candidate Trajectory Retrieval

Input: The partial cell trajectory, Tq = q1, q2, · · · , ql.
Output: Candidate Trajectories CT .

Transform cells in Tq into a set of grid cells ST
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Candidate Trajectory Retrieval

Input: The partial cell trajectory, Tq = q1, q2, · · · , ql.
Output: Candidate Trajectories CT .

18 / 26



Prediction Algorithms

Calculate the real similarity of the partial trajectory and

the candidate trajectories.

The predicted destinations can then be calculated using

Observation 2.

Instead of Choosing the most frequent destinations

(Freq), choose the cluster centers(Cluster).
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Experimental Evaluation

Real dataset:

GPS points of 12000 taxis, 3 months, in the urban area

about 50km× 50km in Beijing.

Preprocess the data to get the trajectories.

Test set: randomly pick 1,000 trajectories.

Cut the test trajectories into different length. The

complement of a trajectory is δ.

The number of returned destinations k.
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Compared algorithms

Näıve : Predict the last cell of the partial trajectory as

the destination.

RF : Random Forests.

SubSyn[1]: The modified Markov Chain approach, use

the same information as ours.

Cluster is the diameter cluster based algorithm, and

Freq is the destination frequency based algorithm.

Cluster (k = 1) is an extension prediction algorithm.
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Accuracy Performance
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Figure: Average minimum error. (ε = 500m, θ = 0.15, r = 500m).

AvgMinErr = 1
n

∑n
j=1 MinErr(qj), qj ∈ Q, where

MinErr(qj) = mini∈[k] L1(dpji , dr).
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Accuracy Performance
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Näıve

(a) δ = 30%
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(b) δ = 50%
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(c) δ = 70%
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(d) δ = 90%

Figure: Distance-accuracy curve of k = 3 predicted destinations
(ε = 500m, θ = 0.15, r = 500m).

DAV(λ) is the percentage of queries for which the error is no

more than λ.
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End

Thank you!
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