Learning and Prediction over Massive Spatio－temporal Data

Dong Wang Institute for Interdisciplinary Information Sciences Tsinghua University，China

Tsinghua University

■ My Profile

■ Research Interests
■ Deep Learning, Machine Learning, Spatio-temporal data mining

- Awards
- Rank 2 / 1648, Didi Supply-Demand Challenge Competition 2016
- The Most Potential Prize, Didi Supply-Demand Challenge Competition 2016
■ Rank 3 / 1956, Datacastle Travel time estimation competition 2017
- Publications

■ A-level conferences: IJCAI 2017 (submitted), ICDE 2017, ICDE 2016, Ubicomp 2016
■ B-level conference: DASFAA 2016

Tsinghua University

\square Spatial Temporal data

\square
－Traffic
－Location and time information
－Navigation，traffic management etc．

Economy
－Store Site Selection

\square Spatial Temporal data

\square Social
－Check－in data
－Infer or recommend the friend to users

Warehouse management

－Pick requests
－Delivering data

话羊大孚
Tsinghua University

■ Deep Learning

■ The hottest topic in ML／DM

Airplane

Person

\square Characteristic

■ Spatial dependence
－different locations interact on each other
－compare with images：
－city level scale，sensitive to the granularity
－Temporal dependence
－past states affect the future
－compare with texts／speech：
－periodicity in multi－granularity
－highly affected by sudden event（raining， traffic accident）

\square Characteristic

■ Diverse data sources
－Mobile phones，online car－hailing orders，weather，POIs，etc．
－Massive，highly noisy

- PhD Work

- Supply-demand Prediction
- Online Car-hailing Services
- When will you arrive?
- Estimating Travel Time Based on Recurrent Neural Networks
- Social relationship detection
- Automatic User Identification across Heterogeneous Data Sources
- Traffic condition Prediction
- Traffic Condition Prediction System

\square Supply-Demand Prediction for Online Car-hailing Services using Deep Neural Network

- Objective
- Predict the gap between the car-hailing supply and demand in a certain area in the next 10 minutes. ${ }^{1}$
- This problem is from Di-tech Algorithm Competition 2016
- Motivation
- Balance the supply-demand by scheduling the drivers in advance
- Adjust the price dynamically

\square Definitions

Car－hailing order

1．Date
4．Star area ID
2．Timeslot
5．Destination area ID

Environment data：

1．weather 2．traffic condition
Objective
Predict the supply－demand gap（e．g．， the number of invalid orders）of a certain area，in the next 10 minutes．

■ Challenges

- The car-hailing supply-demand varies dynamically
- geographic locations
- time intervals.
- Standard models +"hand-crafted" features
- Logistic regression, SVM, random fores gradient boosting
- Various data types
- Order, date, weather, traffic
- Various data sources

Framework

1．General blocks

2．Using embedding to ＂cluster＂similar areas and timeslots

3．Learning the useful feature vector from the order data

4．Connecting different blocks with residual link
5．End－to－end model

\square Identity Part

－Different areas at different time can share similar supply－ demand patterns．
－Prior work clusters the similar data ：
－Manually design the distance measure
－Build several sub－models
（business area，residential area，etc．）

Identity Block

\square Embedding

－Categorical value－＞real vector

－Discover semantic similaritv

Tsinghua University

Effects of Embedding

Order Part

Tsinghua University

■ Effects of Embedding

Area 1

We visualize the weight vectors in two different areas at Tuesday and Sunday.

Residual links

■ Weather Block

- Residual link
- Take the output of weather block as the "residual"
- Makes the model more flexible to incorporate new data

\square Deep Residual Networks¹

－Train very deep neural network
－Gradient vanishing／exploding problem
－Add connections between layers

［1］He，Kaiming，et al．＂Deep residual learning for image recognition．＂Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition． 2016.

VGG－19

34－layer plain

34－layer residual

－Incorporate New Data

－Makes the model more flexible to incorporate new data

\square Experiment

Table: Performance Comparison

Model	Error Metrics	
	MAE	RMSE
Average	14.58	52.94
LASSO	3.82	16.29
GBDT	3.72	15.88
RF	3.92	17.18
Basic DeepSD	3.56	15.57
Advanced DeepSD	$\mathbf{3 . 3 0}$	$\mathbf{1 3 . 9 9}$

Tsinghua University

■ Experiment

Tsinghua University

\square Conclusion

1．End－to－end model
2．Design a general block Identity Block

3．Learn the useful feature vector from the order data

4．Involve in new external data easily

5．Great potential

BIG DATA \＆DEEP LEARNING

Tsinghua University

■ Estimating Travel Time Based on Recurrent Neural Networks

When will you arrive？${ }^{1}$

Motivation

－Routes planning，Navigation
－Traffic dispatching

Previous work

－Estimate for each individual road
－Road intersections and traffic lights
－No driving habits

1．This problem is from DataCastle 2017

Tsinghua University

■ Definitions

Objective

Given：1．path 2．driver 3．start time Estimate：
the travel time for the given path．

Train data

GPS trajectory
Sample points from path

■ Challenges

－The travel time of a specific path can be very different
\checkmark Peak／Non－peak hour
\checkmark The day of the week

－Diverse values of trajectory length／distance．

－Different driving habits

Architecture

1．Use Attributes Component incorporate various factors

2．Use Sequence Learning Component to handle trajectory

3．Use Estimation Component to predict the travel time
4．Extend to multi－task learning by introducing an Auxiliary Component

\square Sequence Learning Component

－RNN（Recurrent Neural Network）
－LSTM（Long Short Term Memory）
－Time dependence and spatial dependence

Tsinghua University

\square Sequence Learning Component

■ $\mathrm{x}_{\mathrm{i}}->\mathrm{h}_{\mathrm{i}}$

- Abstract of the first i points
- Deal the new point
- Trajectory -> Vector
- Represent the whole trajectory with all h_{i}.
■ Handling different trajectory lengths
- Mean Pooling Trick
- Sampling Trick
$P \overrightarrow{a t h}$

\square Auxiliary Component

To utilize the＂local information＂
－estimate the travel time of each sub－ trajectory

Auxiliary Component

－extend to a multi－task model
－used as the auxiliary output

\square Model Training

- Evaluate: mean absolute percentage error (MAPE)
- Estimation Component

$$
\operatorname{loss}_{\text {seq }}=\left|e-\Delta t_{p_{1} \rightarrow p_{L_{m}}}\right| / \Delta t_{p_{1} \rightarrow p_{L_{m}}} .
$$

- Auxiliary Component

$$
\operatorname{los} s_{a u x}=\frac{1}{m-1} \sum_{i=1}^{m-1} \frac{\left|e_{i}-\Delta t_{p_{L_{i}} \rightarrow p_{L_{i+1}}}\right|}{\Delta t_{p_{L_{i}} \rightarrow p_{L_{i+1}}}+\epsilon} .
$$

- Final loss:

$$
\operatorname{loss}=\operatorname{loss}_{s e q}+\alpha \cdot \operatorname{loss}_{a u x}
$$

话羊大学
Tsinghua University

\square Experiment

Data Description

－ 1.4 billion GPS records of 14，864 taxis in Oct． 2014 in Chengdu．
－Total number of trajectories：9，653，822．（60GB）
－Use the last 7 days（from 24th to 30th）as the test set and the remaining ones as the training set．

Spark
TensorFlow

\square Experiment

Table：Performance Comparison

Model	MAPE
Gradient Boosting	20.32%
MLP－3 layers	16.17%
MLP－5 layers	15.75%
Vanilla RNN	18.85%
DeepTTE	$\mathbf{1 3 . 1 4 \%}$

Tsinghua University

\square Experiment

Table: Performance of Different Number of Samples

\#Samples	MAPE	Time (per epoch)
DeepTTE-10	15.45%	674 s
DeepTTE-30	13.14%	1729 s
DeepTTE-70	13.02%	3879 s
DeepTTE-100	12.74%	5484 s
DeepTTE-Var	12.87%	5841 s

\square Experiment

Effects of Components

- Eliminate Estimation Component, 28.44\%;
- Eliminate Auxiliary Component, 13.95\%;
- Our entire model, 13.14\%.

\square Experiment

 Effects of Attribute Component| Model | MAPE |
| :---: | :---: |
| DeepTTE－30 | 13.14% |
| Eliminate driverID | 13.37% |
| Eliminate weekID | 13.58% |
| Eliminate both | 13.59% |

\square Conclusion

1．New block for handle trajectory （with LSTM）

2．Extend to multi－task learning by introducing an Auxiliary Component
$P \overrightarrow{a t h}$

Auxiliary Component

\square Automatic User Identification across Heterogeneous Data Sources

Goal：Identify the same user from the historical trajectory data set．

Motivation：human mobility，data integration， improve data quality

Same person， different sampling rates

School mates， significant overlap

Same person，sparse rate， occurred in several places

Tsinghua University

\square Automatic User Identification across Heterogeneous Data Sources

－Novel similarity measure based on signals：
－co－occurrence，sampling rate， distance
－Robust performance
－Efficient framework based on MapReduce

（a）CN－Sparse vs．CN－Dense

（d）CB－Part1 vs．CB－Part2

（b）CN－Part1 vs．CN－Part2

（e）UT－Sparse vs．UT－Dense

（c）CB－Sparse vs．CB－Dense

（f）UT－Part1 vs．UT－Part2

■ ETCPS：An Effective and Scalable Traffic Condition Prediction System

Goal：Predict the traffic condition of each road in the urban area after 15 minutes

Motivation：traffic management，routing service， taxi ride sharing

Previous work：
－road side loop sensors data
－GPS data collected from floating vehicles
－only focused on the arterial roads
－urban roads not considered

■ Traffic Condition Prediction System

Relationships observation

－PR－Tree models the traffic condition time series of each individual roads

0.7
0.6
－STPGM（Spatial temporal probabilistic graphic model）models the relationship between different roads
－Our best quality prediction is achieved by a careful ensemble of the two models．

■ On going work

Social Relationship Detection Based on Sequence to Sequence Learning

Goal：

－Learn the similarity measure by neural network
－Transform trajectories to vectors

Motivation：

－Faster algorithm for similar user searching
－Behavior prediction
－Social relationship detection

■ On going work

Characterizing Traffic Conditions using Recurrent Neural Networks

Goal: characterize the traffic condition of any given path in the last 30 min .

- Future plan

\square
Simulation of complicated environment using generative models

- Spatio-temporal data generator under complicated environment
- Provide information for decision making

Generative Adversary Nets
(e.g. Info Gan)

\square Future plan

Policy designing using the Deep Reinforcement Learning

－Car－dispatching
－Price adjusting
－Storage planning
\qquad

动态加价（3）
优惠券抵扣
－Deep Reinforcement Learning
－Combine prediction \＆simulator \＆decision making
－Deep learning to learn Q－function

Future plan

What if I were fortune enough ...

- Set up a deep learning course to attract more students
- Build up a deep learning interest group
- Research
- Machine learning competitions
- Apply the deep learning into economics
- e.g., Spatial economics
- Cooperation work with the Professors in economics

Tsinghua University

Thank you

