

Learning and Prediction over Massive Spatio-temporal Data

Dong Wang Institute for Interdisciplinary Information Sciences Tsinghua University, China

My Profile

Research Interests

Deep Learning, Machine Learning, Spatio-temporal data mining

Awards

- Rank 2 / 1648, Didi Supply-Demand Challenge Competition 2016
- The Most Potential Prize, Didi Supply-Demand Challenge Competition 2016
- Rank 3 / 1956, Datacastle Travel time estimation competition 2017

Publications

- A-level conferences: IJCAI 2017 (submitted), ICDE 2017, ICDE 2016, Ubicomp 2016
- **B-level** conference: DASFAA 2016

Spatial Temporal data

Traffic

- Location and time information
- Navigation, traffic management etc.

- Store Site Selection

Spatial Temporal data

- **Social**
- Check-in data
- Infer or recommend the friend to users

- Warehouse management Pick requests

 - **Delivering data**

Deep Learning

The hottest topic in ML / DM

Standard Architecture

- Images/Videos —— CNN
- Text/Speech —— RNN
- Playing Games/Auto Drive DQN

No standard architecture for spatiotemporal data.

Characteristic

- Spatial dependence
- different locations interact on each other
- compare with images:
 - city level scale, sensitive to the granularity

Temporal dependence

- past states affect the future
- compare with texts/speech:
 - periodicity in multi-granularity
 - highly affected by sudden event (raining, traffic accident)

Characteristic

- Diverse data sources
 - Mobile phones, online car-hailing orders, weather, POIs, etc.

Massive, highly noisy

PhD Work

- Supply-demand Prediction
 Online Car-hailing Services
- When will you arrive?
 Estimating Travel Time Based on Recurrent Neural Networks

Traffic condition Prediction

- Traffic Condition Prediction System

Supply-Demand Prediction for Online Car-hailing Services using Deep Neural Network

• Objective

- Predict the gap between the car-hailing supply and demand in a certain area in the next 10 minutes.¹
- This problem is from <u>Di-tech Algorithm</u> <u>Competition 2016</u>
- Motivation
 - Balance the supply-demand by scheduling the drivers in advance
 - Adjust the price dynamically

Definitions

Car-hailing order

- 1. Date 2. Timeslot
- 4. Star area ID 5. Destination area ID

Environment data:

1. weather 2. traffic condition

Objective

Predict the supply-demand gap (e.g., the number of invalid orders) of a certain area, in the next 10 minutes.

WX4DX WX4F8 WX4FE WX4DX WX4F8 WX4FE F105 F105 WX4DR WX4F2 WX4F WX4F WX4DR WX4F2 WX4F WX

valid (invalid)

3. Passenger ID

Challenges

- The car-hailing supply-demand varies dynamically
 - geographic locations
 - time intervals.
- Standard models +"hand-crafted" features

10

00:00

- Logistic regression, SVM, random fores 40 gradient boosting Demand 20
- Various data types
 - Order, date, weather, traffic
- Various data sources

Framework

- 1. General blocks
- Using embedding to "cluster" similar areas and timeslots
- 3. Learning the useful feature vector from the order data
- 4. Connecting different blocks with residual link
- 5. End-to-end model

Identity Part

- Different areas at different time can share similar supplydemand patterns.
- Prior work clusters the similar data :
 - Manually design the distance measure
 - Build several sub-models
 (business area, residential area, etc.)

Embedding

Categorical value -> real vector

$$y_t = x_t \cdot W$$

$$y_t = (-0.2, 0.4, 0.1) \qquad \qquad x_t = (0, 0, 1, 0, 0)$$

• Discover semantic similarity

Effects of Embedding

We visualize the weight vectors in two different areas at Tuesday and Sunday.

Residual links

- Weather Block
- Residual link
 - Take the output of weather block as the "residual"
 - Makes the model more flexible to incorporate new data

Deep Residual Networks¹

- Train very deep neural network
 - Gradient vanishing/exploding problem
- Add connections between layers

[1] He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2016.

Incorporate New Data

Makes the model more flexible

to incorporate new data

Supply-demand Block Order Data **Order Part Environment** Part Supply-demand Block Order Data **Identity Part** Weather Block Weather Data **Environment** Part Identity Block **Identity Part** Weather Block Weather Data Traffic Block Traffic Data Identity Block -+----------Traffic Block Traffic Data Add Block New Data Æ Concatenate Layer Concatenate Layer FC32 FC32 Single Neuron Single Neural

Order Part

Table: Performance Comparison

	Error Metrics	
Model	MAE	RMSE
Average	14.58	52.94
LASSO	3.82	16.29
GBDT	3.72	15.88
RF	3.92	17.18
Basic DeepSD	3.56	15.57
Advanced DeepSD	3.30	13.99

Conclusion

- 1. End-to-end model
- 2. Design a general block
- 3. Learn the useful feature vector from the order data

Identity Block

AreaID

Embed

TimeID

Embed

Concatenate Layer

 $^{\bullet}X_{id}$

WeekID

Embed

- 4. Involve in new external data easily
- 5. Great potential

140

120

100

Demand 09 08

20

00:00

0.8

0.7

0.6

0.5 Meight 0.4 0.3

0.2

0.1

06:00

Mon Tue Wed

12:00

Time

Tuesday

Sunday

Thu

Fri

Sat Sun

18:00

Area24

Area4

Estimating Travel Time Based on Recurrent Neural Networks

When will you arrive?¹

Motivation

- Routes planning, Navigation
- Traffic dispatching

Previous work

- Estimate for each individual road
- Road intersections and traffic lights
- No driving habits

IJCAI 2017

Definitions

Objective

Given: 1. path 2. driver 3. start time **Estimate:**

the travel time for the given path.

Train data

GPS trajectory Sample points from path

Challenges

- The travel time of a specific path can be very different
 - ✓ Peak/Non-peak hour
 - ✓ The day of the week
- Diverse values of trajectory length/distance.

• Different driving habits

Architecture

- 1. Use Attributes Component incorporate various factors
- 2. Use Sequence Learning Component to handle trajectory
- 3. Use Estimation Component to predict the travel time
- 4. Extend to multi-task learning by introducing an AuxiliaryComponent

Sequence Learning Component

- RNN(Recurrent Neural Network)
- LSTM (Long Short Term Memory)
- Time dependence and spatial dependence

Sequence Learning Component

- x_i -> h_i
 - Abstract of the first i points
 - Deal the new point
 - I Trajectory -> Vector
 - Represent the whole trajectory with all h_i.
 - Handling different trajectory lengths
 - Mean Pooling Trick
 - Sampling Trick

Auxiliary Component

To utilize the "local information"

- estimate the travel time of each subtrajectory
- extend to a multi-task model
- used as the auxiliary output

Model Training

- Evaluate: mean absolute percentage error (MAPE)
 - Estimation Component

$$\mathrm{loss}_{seq} = |e - \Delta t_{p_1
ightarrow p_{L_m}}| / \Delta t_{p_1
ightarrow p_{L_m}}.$$

• Auxiliary Component

$$\mathrm{los} s_{aux} = rac{1}{m-1} \sum_{i=1}^{m-1} rac{|e_i - \Delta t_{p_{L_i}
ightarrow p_{L_{i+1}}}|}{\Delta t_{p_{L_i}
ightarrow p_{L_{i+1}}} + \epsilon}.$$

• Final loss:

$$loss = loss_{seq} + \alpha \cdot loss_{aux}$$

Data Description

- 1.4 billion GPS records of 14,864 taxis in Oct. 2014 in Chengdu.
- Total number of trajectories: 9,653,822. (60GB)
- Use the last 7 days (from 24th to 30th) as the test set and the remaining ones as the training set.

Table: Performance Comparison

Model	MAPE
Gradient Boosting	20.32%
MLP-3 layers	16.17%
MLP-5 layers	15.75%
Vanilla RNN	18.85%
DeepTTE	13.14%

Table: Performance of Different Number of Samples

#Samples	MAPE	Time (per epoch)
DeepTTE-10	15.45%	674s
DeepTTE-30	13.14%	1729s
DeepTTE-70	13.02%	3879s
DeepTTE-100	12.74%	5484s
DeepTTE-Var	12.87%	5841s

Effects of Components

- Eliminate Estimation Component, 28.44%;
- Eliminate Auxiliary Component, 13.95%;
- Our entire model, 13.14%.

Table: Effects of Attribute Component

Model	ΜΑΡΕ
DeepTTE-30	13.14%
Eliminate driverID	13.37%
Eliminate weekID	13.58%
Eliminate both	13.59%

Conclusion

- 1. New block for handle trajectory (with LSTM)
- 2. Extend to multi-task learning by introducing an Auxiliary Component

Automatic User Identification across Heterogeneous Data Sources

Goal: Identify the same user from the historical trajectory data set.

Motivation: human mobility, data integration, improve data quality

Challenges:

- Very different sampling rates
- Information loss in sparse trajectories
- Temporally disjoint
- Distinguish the overlaps

Same person, different sampling rates

City City C City B

School mates, significant overlap

Same person, sparse rate, occurred in several places ICDE 2016

Automatic User Identification across Heterogeneous Data Sources

- Novel similarity measure based on signals:
 - co-occurrence, sampling rate, distance
 - Robust performance

 $\langle \langle 1, 2, 20 \rangle, \langle id_A, 5 \rangle \rangle$

 $\langle \langle 3, 4, 20 \rangle, \langle id_A, 4 \rangle \rangle \leftarrow$

 Efficient framework based on MapReduce

 $\langle \langle 1, 2, 20 \rangle, \langle id_B, 3 \rangle \rangle$

 $\Rightarrow \langle \langle 1, 4, 20 \rangle, \langle id_B, 2 \rangle \rangle$

 $\langle \langle 2, 3, 20 \rangle, \langle id_A, 3 \rangle \rangle$

 $\langle \langle 3, 4, 20 \rangle^{\mathsf{v}}, \langle id_B, 2 \rangle \rangle$

Shuffle.

Group

Keys

 $(id_A, 3)$

 $\langle id_A, 4 \rangle$

 $\langle id_B, 2 \rangle$

Key (3, 4, 20)

 $\langle id_A, \langle id_B, \langle 3, 4, 20 \rangle, 2 \rangle$

Second

Map

ETCPS: An Effective and Scalable Traffic Condition Prediction System

Goal: Predict the traffic condition of each road in the urban area after 15 minutes

Motivation: traffic management, routing service, taxi ride sharing

Previous work:

- road side loop sensors data
- GPS data collected from floating vehicles
 - only focused on the arterial roads
 - urban roads not considered

Traffic Condition Prediction System

Relationships observation 80 70 60 20 <u>-</u>50 g_{t+1} o² 40 30 -20 20 -40-60 ٥ 10 20 30 40 50 60 70 80 90 -60 -40-20 20 40 O_{f} q_i MAE(km WAE(km/) 2.5 4.0 Avg ETCP5 STHMM PR-Tree STPGM ETCPS Ava STHMM PR-Tree STPGM Diff(Org) Diff(Kal) (a) All models (standard) (b) All models (sparse) (c) PR-Tree (standard) MRE(%) 7.0 WAE(km/h) 4.0 L. Org (d) STPGM (standard) (e) STPGM (sparse) (f) Predict longer

• PR-Tree models the traffic condition time series of each individual roads

- STPGM (Spatial temporal probabilistic graphic model) models the relationship between different roads
- Our best quality prediction is achieved by a careful ensemble of the two models.

ICDE 2017

On going work

Social Relationship Detection Based on Sequence to Sequence Learning

Goal:

- Learn the similarity measure by neural network
- Transform trajectories to vectors

Motivation:

- Faster algorithm for similar user searching
- Behavior prediction
- Social relationship detection

On going work

Characterizing Traffic Conditions using Recurrent Neural Networks

Goal: characterize the traffic condition of any given path in the last 30 min.

Motivation:

- Enhance accuracy for travel time estimation
- Refinement prediction of travel flow

Future plan

Simulation of complicated environment using generative models

- Spatio-temporal data generator under complicated environment
- Provide information for decision making

Generative Adversary Nets

(e.g. Info Gan)

Future plan

Policy designing using the Deep Reinforcement Learning

- Car-dispatching
- Price adjusting
- Storage planning

.

```
起步价 0元
里程费(32.66公里) 45元
时长费(32分钟) 14元
动态加价 ⑦ 39元
优惠券抵扣 10元
合计预估 888元
```


- Deep Reinforcement Learning
 - Combine prediction & simulator & decision making
 - Deep learning to learn Q-function

Future plan

What if I were fortune enough ...

- Set up a deep learning course to attract more students
- Build up a deep learning interest group
 - Research
 - Machine learning competitions
- Apply the deep learning into economics
 - e.g., Spatial economics
 - Cooperation work with the Professors in economics

Thank you