

Supply-Demand Prediction for Online Car-hailing Services using Deep Neural Network

• Objective

- Predict the gap between the car-hailing supply and demand in a certain area in the next 10 minutes.¹
- This problem is from <u>Di-tech Algorithm</u> <u>Competition 2016</u>
- Motivation
 - Balance the supply-demand by scheduling the drivers in advance
 - Adjust the price dynamically

Definitions

Car-hailing order

- 1. Date 2. Timeslot
- 4. Star area ID 5. Destination area ID

Environment data:

1. weather 2. traffic condition

Objective

Predict the supply-demand gap (e.g., the number of invalid orders) of a certain area, in the next 10 minutes.

WX4DX WX4F8 WX4FE WX4DX WX4F8 WX4FE F105 F105 WX4DR WX4F2 WX4F WX4F WX4DR WX4F2 WX4F WX

valid (invalid)

3. Passenger ID

Challenges

- The car-hailing supply-demand varies dynamically
 - geographic locations
 - time intervals.
- Standard models +"hand-crafted" features

10

00:00

- Logistic regression, SVM, random fores 40 gradient boosting Demand 20
- Various data types
 - Order, date, weather, traffic
- Various data sources

Framework

- 1. General blocks
- Using embedding to "cluster" similar areas and timeslots
- 3. Learning the useful feature vector from the order data
- 4. Connecting different blocks with residual link
- 5. End-to-end model

Identity Part

- Different areas at different time can share similar supplydemand patterns.
- Prior work clusters the similar data :
 - Manually design the distance measure
 - Build several sub-models
 (business area, residential area, etc.)

Embedding

Categorical value -> real vector

$$y_t = x_t \cdot W$$

$$y_t = (-0.2, 0.4, 0.1) \qquad \qquad x_t = (0, 0, 1, 0, 0)$$

• Discover semantic similarity

Effects of Embedding

We visualize the weight vectors in two different areas at Tuesday and Sunday.

Residual links

- Weather Block
- Residual link
 - Take the output of weather block as the "residual"
 - Makes the model more flexible to incorporate new data

Deep Residual Networks¹

- Train very deep neural network
 - Gradient vanishing/exploding problem
- Add connections between layers

[1] He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2016.

Incorporate New Data

Makes the model more flexible

to incorporate new data

Supply-demand Block Order Data **Order Part Environment** Part Supply-demand Block Order Data **Identity Part** Weather Block Weather Data **Environment** Part Identity Block **Identity Part** Weather Block Weather Data Traffic Block Traffic Data Identity Block -+----------Traffic Block Traffic Data Add Block New Data Æ Concatenate Layer Concatenate Layer FC32 FC32 Single Neuron Single Neural

Order Part

Experiment

Table: Performance Comparison

	Error Metrics	
Model	MAE	RMSE
Average	14.58	52.94
LASSO	3.82	16.29
GBDT	3.72	15.88
RF	3.92	17.18
Basic DeepSD	3.56	15.57
Advanced DeepSD	3.30	13.99

Experiment

Conclusion

- 1. End-to-end model
- 2. Design a general block
- 3. Learn the useful feature vector from the order data

Identity Block

AreaID

Embed

TimeID

Embed

Concatenate Layer

 $^{\bullet}X_{id}$

WeekID

Embed

- 4. Involve in new external data easily
- 5. Great potential

140

120

100

Demand 09 08

20

00:00

0.8

0.7

0.6

0.5 Meight 0.4 0.3

0.2

0.1

06:00

Mon Tue Wed

12:00

Time

Tuesday

Sunday

Thu

Fri

Sat Sun

18:00

Area24

Area4

Thank you