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Abstract. Real-time prediction of the traffic condition is an important
ingredient for a variety of applications. In this paper, we propose an
Ensemble based Traffic Condition Prediction System (ETCPS) for pre-
dicting the traffic conditions of any roads in a city based on the cur-
rent and historical GPS data collected from floating vehicles. We have
observed two useful correlations in the traffic condition time series, which
are the bases of our design. In order to exploit these two correlations
for prediction, we propose two different models called Predictive Regres-
sion Tree (PR-Tree) and Spatial Temporal Probabilistic Graphical Model
(STPGM). Our best quality prediction is achieved by a careful ensemble
of the two models. Our system provides high-quality prediction and can
easily scale to very large datasets. We conduct extensive experimental
evaluations with a large GPS data set collected from more than 12,000
taxis in Beijing during two months. The experimental results demon-
strate the effectiveness, efficiency, and scalability of our system.

1 Introduction

Real-time prediction of the traffic condition becomes increasingly important.
A well-performed traffic condition prediction system is the fundamental ingre-
dient of various real applications. Examples include the traffic management [6],
routing service [13], taxi ride sharing [8] etc. Such problem has been widely
studied in recent years [1,10,11,15]. Generally, given the current and historical
traffic conditions of the road network, our goal is to predict the traffic condition
of each road after a few minutes or hours.

Most prior works on traffic condition prediction are based on the data gen-
erated by the road side loop sensors. However, such loop sensors are usually
expensive and only embedded in highways and part of urban main roads. Alter-
natively, ubiquitous location based services enable us to collect a large volume
of traffic data from GPS-embedded devices. Such GPS data provides valuable
information for analyzing and predicting the traffic conditions. Despite there
exist several researches and products for traffic prediction based on the GPS
data, most of them only focused on the arterial roads and did not consider the
urban roads.
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In this paper, we study the efficient and scalable models for traffic condition
prediction based on the GPS data collected from floating vehicles (taxis in our
data). To make our exposition more concrete, we first illustrate several challenges
in our problem.

– Large volume of GPS data has been generated routinely, especially for some
metropolises such as New York or Beijing. Most prior works are based on
probabilistic graphical models [3,5,9]. The state spaces explode in these algo-
rithms under very large scale datasets. Thus, it takes a very long time to run
the algorithms.

– The traffic conditions and their transition patterns (i.e., the patterns in which
the traffic condition varies) for each road vary significantly under different
time intervals. For example, if the traffic is in a jam during a peak hour,
it usually lasts for a long time. However, if such congestion happens in a
non-peak hour, the traffic usually become light soon. Such traffic pattern is
changing over time. Prior works based on the Markov Chain and Hidden
Markov Model (HMM) [5,9,11] can not capture such feature since the states
of transition matrices are not related with time.

– The taxis sometimes slow down or even stop for picking or attracting the
passengers. It is hard to distinguish whether such low travel speed is due to
the congestion of the traffic. Such records may lead to erroneous estimations
of the traffic condition.

To address the above challenges, we propose the Ensemble based Traffic Con-
dition Prediction System (ETCPS). Our system combines two different models
called Predictive Regression Tree (PR-Tree) and Spatial Temporal Probabilistic
Graphical Model (STPGM). We summarize our technical contributions below:

– We present two useful observations in the traffic condition time series which
are the bases of our design. We first present the correlations between the gaps
of the traffic condition and its expected traffic condition. Then, we show the
autocorrelations in the first order difference of the traffic condition series (See
Sect. 2).

– We propose a regression tree based model called PR-Tree. PR-Tree can effec-
tively capture the proposed correlations and thus predict the traffic conditions
with a high accuracy. PR-Tree is very efficient on large scale datasets. Given
a training set with 105 roads, it only takes 3.26 min to train a PR-Tree and
the prediction of PR-Tree is real-time (See Sect. 5).

– We propose a probabilistic graphical model called STPGM. STPGM can cap-
ture the correlations between adjacent roads. It formulates the state transi-
tions in different time intervals separately. Thus, the state space for STPGM
is much smaller than the prior works [3,5,9]. On the other hand, STPGM
captures different traffic patterns in different time intervals. We show that in
the experiment STPGM is more efficient and accurate than the algorithms in
prior works (See Sect. 6).

– We propose a prediction system called ETCPS which combines PR-Tree and
STPGM. We evaluate our model with real dataset which consists of GPS
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points generated by over 12,000 taxis collected in two months. It provides an
experimental evidence that ETCPS is efficient, scalable in terms of supporting
large size road networks, and achieves a high-quality prediction (See Sect. 7).

2 Preliminary

Road Network. We are given a data set consisting of GPS records of taxis.
The GPS records of the j-th taxi is represented by Trj = {p1, p2, . . . , p|Trj |}.
Each pi represents a GPS record (cid, time, location, speed) indicating the id
of the j-th car, the time stamp when the record is generated, the latitude and
longitude of the current location and the instantaneous speed respectively. We
define a real urban road network as a directed graph G = (V,E) where V is the
set of nodes representing the terminal points of road segments and E is the set
of road segments. A road segment ri is a directed edge associated with a start
point vs, an end point ve with length li. See Fig. 1 for an illustration. Utilizing
the technique of map-matching [7], each GPS record pi on the trajectory Trj

can be located to a road segment ri in which the car j is traveling on.

Fig. 1. Time cost

Table 1. Time cost (Million seconds)

Time Road Speed Time Road Speed
Traj Traj

(Intv) segment (km/h) (Intv) segment (km/h)

Tr1 34 r1 56 Tr2 34 r1 60

Tr1 35 r2 60 Tr2 35 r2 58

Tr1 35 r3 61 Tr2 35 r4 58

Tr3 35 r2 15 Tr2 36 r5 60

Tr3 35 r3 60

Traffic Condition. We define the traffic condition for a road segment ri during
a specific period as below. Given a GPS data set collected during D days, we
split the period of D days into several intervals, and each time interval spans λ
minutes. We assume that the traffic condition of a specific road segment remains
unchanged in one interval. Such assumption is widely used in the transportation
literature [11,15].

As each day has M = 60·24
λ time intervals, for a GPS data set collected during

D days, there are T = M · D time intervals. The t-th interval is [t · λ, (t + 1) · λ).
For example, if we set λ = 15,D = 31, then we have M = 96, T = 2976, and
the interval 34 is a time period from 8 : 30 to 8 : 45 in the first day.

By mapping each GPS record to a road segment, we consider the average
speed of all the records observed in the t-th interval on a road segment. For
example, in Table 1, the observed average speed for r2 in the 35-th interval is
(60 + 58 + 15)/3. However, some taxis may run at a very low speed or even
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stop for boarding or balling when the road is not congested. We regard such
records as the noise which is eliminated in the pre-processing stage (see Sect. 8
for details). Then, the traffic condition of a road segment ri in the t-th interval is
defined as the average speed of all the GPS records observed in this road segment
during the t-th interval, denoted as oi

t. Note that for some road segments, there
may not exist any GPS record in the t-th interval and thus we can not define
the corresponding traffic condition. We explain how we deal with such case in
Sect. 8. Currently, we simply assume oi

t is well-defined for all i and t. Moreover,
we use Orgi = {oi

1, . . . , o
i
T } to denote the traffic condition time series of road

segment ri.

Expected Traffic Condition. Note that the traffic conditions usually have
the “daily pattern”. For example, a road segment is usually in a jam during
6:00–9:00 each day whereas from 9:00 to 11:00 it is usually light. For the t-th
interval, we define t mod M as its daily index, i.e., it is the t mod M -th interval
in its corresponding day. For example, if we set M = 96, then the 226-th interval
represents the time period from 8 : 30–8 : 45 in the third day and its daily index
is 226 mod 96 = 34. Let Ai

t = {oi
t′ |t′ ≡ t mod M} be the set of traffic conditions

observed in road segment ri during the t mod M -th interval for all days. For
example, in Table 1, the 34-th interval is a time period from 8 : 30 to 8 : 45 on
the first day. Then, Ai

34 is the set of traffic conditions of the road segment ri in
all days from 8 : 30 to 8 : 45. We call the mean of Ai

t the expected traffic condition
of ri in time interval t, denoted as ai

t =
∑

a∈Ai
t
a/|Ai

t|. Essentially, the expected
traffic condition ai

t indicates the value that traffic conditions are usually around,
in the t mod M -th interval of a day. We use Avgi = {ai

1, . . . , a
i
T } to denote the

expected traffic condition time series of the road segment ri. Note that Avgi is
a periodic series and once we have the training data, ai

t is always available for
all t ∈ Z.

Problem Definition. Given the historical traffic conditions before time interval
T , Orgi = {oi

1, . . . , o
i
T } for all i, our goal is to predict the traffic condition on the

T +1-th interval oi
T+1 or even longer for each road segment ri. For convenience,

for any t, we use pt to denote the predicted traffic condition in the time interval t.

3 Useful Observations

Most of prior works predict the future traffic conditions directly based on the
traffic condition time series. However, it is difficult to extract the patterns in
the traffic condition time series Orgi. We find that by transforming the Orgi

into two different forms of time series, the new time series reveal very strong
autocorrelations. We hope these observations can provide useful insight in further
study of the travel condition prediction problem and related problems.

Expectation-Reality Gap. The traffic condition time series of the same road
segment in each day usually exhibits strong periodic pattern which we refer to
as the “daily pattern”. We eliminate the daily pattern from the traffic condition
series by subtracting the corresponding expected traffic condition from each of
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the traffic conditions. Specifically, we set gi
t = oi

t − ai
t and we thus obtain a new

series Gapi = {gi
t|t = 1, . . . , T}. Intuitively, if gt < 0, it means that the traffic

condition in the time interval t is more congested than usual. We find that there
exists a strong correlation between gt+1 and gt. Figures 2 and 3 show the scatter
diagram of (ot, ot+1) and (gt, gt+1) of a specific road segment respectively. As we
can see, by transforming the traffic condition series Orgi to the gap series Gapi,
we essentially extract the “pattern” of the traffic condition series.

Fig. 2. ot and ot+1 Fig. 3. gt and gt+1 Fig. 4. ACF of Diff(Org)

First Order Difference of Traffic Condition Series. We use δi
t = oi

t−oi
t−1 to

represent the first order difference of traffic condition series, denoted as Diff(Org).
We use ACF (Auto Correlation Function) to analyze the autocorrelation in the
time series of δi

t. The autocorrelation of a random process describes the correla-
tion between values of the process at different times with a time lag τ . Given a
time series and time lag, ACF returns a value between +1 (total positive correla-
tion) and −1 (total negative correlation) inclusive. If the absolute value of ACF
is beyond ±0.05, we usually think the time series is autocorrelated at time lag τ .
In Fig. 4, we show the ACF value of the time series δt of a random road segment.
The horizontal axis represents the time lag τ , and vertical axis represents the
ACF value at lag τ . As the ACF value at lag τ = 1 is far beyond the threshold
−0.05, we conclude that there exists a correlation between δt and δt+1.

4 System Overview

The framework of our proposed traffic condition prediction system is illustrated
in Fig. 5. We develop a system that utilizes the historical and real time taxi
GPS records to estimate the current travel condition and predict the travel
conditions in the next time intervals. It is composed of four major components:
Pre-processing, Predictive Regression Tree Model (PR-Tree), Spatial Temporal
Probabilistic Graphical Model (STPGM) and Ensemble.

In the pre-processing phase, first, we map match the GPS trajectories to
road networks using the ST-Matching algorithm [11]. Then, we eliminate the
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Fig. 5. Overview of system framework.

records which are under boarding or balling state. We then deal with the spar-
sity issure that no GPS record is observed for some roads during some time
intervals. With the pre-processing, we thus obtain two time series Org and Avg
as defined in Sect. 2. The details are presented in the experiment part (Sect. 8).
Next, in Sect. 5, we use a regression tree based model called PR-Tree to pre-
dict the future traffic conditions based on our observed correlations. We further
adopt a probabilistic graphical model called STPGM in Sect. 6 which captures
both our observations and the correlations between the road segments. Finally,
we combine two models in the ensemble stage as shown in Sect. 7. We show
that combining two different models enhances the accuracy of the prediction in
Sect. 8.

5 Predicting the Traffic Condition with PR-Tree

In this section, we define a regression tree based model called PR-Tree to predict
the traffic condition of each road segment individually. We first describe the
structure of PR-Tree in detail and how we predict the traffic condition on this
tree in Sect. 5.1. Then in Sect. 5.2, we present the training algorithm of PR-Tree.

5.1 Description of PR-Tree

Recall that the time series Gap shows a strong autocorrelation as we claimed
in Sect. 3. We can thus approximate gt+1 by an estimation ĝt+1 based on gt

and predict the traffic condition in the t + 1-th interval by pt+1 = at+1 + ĝt+1

(the expected traffic condition at+1 is always available as we claimed in Sect. 2).
From Fig. 3, it is reasonable to set ĝt+1 = θ ·gt since the scatter diagram shows a
nearly linear correlation. However, we find that the ratio gt+1/gt varies when gt

takes different values. For example, if gt is closed to −10, gt+1 is usually around
1.2 times gt whereas if gt is closed to −8, gt+1 is usually around 1.4 times gt.
Motived by this, instead of estimating gt+1 by θ · gt, we use a proper function
R(gt) and estimate gt+1 by gt · R(gt).

Structure. To learn a proper function R, we propose a regression tree based
model called PR-Tree. Specifically, PR-Tree splits the input space into several
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subspaces. Each subspace is associated with an output parameter θ. Given the
input gt, we find the subspace corresponding to gt and return the corresponding
θ as R(gt). Formally, each inner node of PR-tree has a splitting value and each
leaf node has a output parameter θ. To find the corresponding subspace of gt, we
search on PR-Tree as follows. Initially, the current node is the root of PR-Tree.
If gt is less than or equal to the splitting value of the current node, we search
the left child recursively. Otherwise, we search the right child. We perform such
search until it reaches a leaf node and return the corresponding θ on the leaf
node as R(gt). For simplicity, we use R to represent the corresponding PR-Tree.

Fig. 6. An example of PR-Tree

We show an example of a PR-Tree in Fig. 6. The PR-Tree contains four
inner nodes (the splitting value of these nodes are {4, 11, 16, 23}), and five leaf
nodes (their values are {0.4, 0.7, 0.6, 1.1, 0.7}). We take gt = 5 as the input. As
the splitting value of the root node is 16 and gt ≤ 16, we search its left child
recursively and finally reach a leaf node with output parameter θ = 0.7.

Prediction. To predict the traffic condition in the time interval t+1, we simply
set ĝt+1 = R(gt) · gt and predict ot+1 by pt+1 = at+1 + R(gt). Figure 6 shows
an example. Given the current traffic condition ot = 45, assuming the expected
traffic condition on t and t + 1 are at = 40, at+1 = 43, we get gt = ot − at = 5.
By taking gt as the input of PR-Tree, we get R(gt) = 0.7. Then, we estimate
ot+1 by at+1 + R(gt) · gt = 46.5.

5.2 Training PR-Trees

First, we present the objective for training PR-Trees. Recall that we predict ot+1

as pt+1 = at+1 + R(gt) · gt. Given the training set Orgi = {oi
1, . . . , o

i
T }, our goal

is to minimize the squared error
∑

t∈[1,T ) (pt+1 − ot+1)2. Equivalently, we need
to find an optimal PR-Tree (function R∗) that

R∗ = argmin
R

∑

t∈[1,T )

(gt+1 − R(gt) · gt)2 (1)
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Algorithm 1. PR-Tree Splitting (Split)
Require: Node root, Training sequence TR, cross validation sequence CV
Ensure: Update the PR-Tree.
1: eTR = f(TR, out(TR))
2: emin = ∞
3: for i = 1, . . . , |TR| − 1 do
4: TRl ← first i elements in TR
5: TRr ← T\TRl

6: if f(TRl, out(TRl)) + f(TRr, out(TRr)) < emin then
7: emin = f(TRl, out(TRl)) + f(TRr, out(TRr))
8: TR∗

l = TRl , TR∗
r = T\TR∗

l � update the best TRl

9: end if
10: end for
11: If emin > eS − γ return
12: root.lc ← a new node corresponds to TR∗

l � split root
13: root.rc ← a new node corresponds to TR∗

r � split root
14: if bestCV > Q(CV ) then � qualify the splitted PR-Tree
15: bestCV = Q(CV ) � update the global best value
16: Split(root.lc, TR∗

l , CV ), Split(root.rc, TR∗
r , CV )

17: set the splitting value of root as maxs∈TR∗
l

s.u � inner node
18: else
19: root.lc = None, root.rc = None
20: set the output value of root as out(TR) � leaf node
21: return
22: end if

Our training algorithm is slightly different from the standard regression
tree training algorithm. To train the PR-Tree, given the time series Gap =
{gi

1, . . . , g
i
T }, we construct another sequence S = {(u, v)|u = gt, v = gt+1,∀t =

[1, T )}. Each element s ∈ S indicates a pair of values (gt, gt+1). We use s.u to
denote the first value in pair s and s.v to denote its second value. We sort S
by increasing order of s.u. For any subsequence Sx ⊂ S and any PR-Tree R, we
define the cost of Sx as Q(Sx) =

∑
s∈Sx

(s.v − R(s.u) · s.u)2, which represents
the squared error if we use PR-Tree R to fit the set Sx.

Our training algorithm works as follows. During the training phase, each
node corresponds to a subsequence of Sx ⊂ S. For a specific node, if it is an
inner node, we use Sl, Sr to denote the corresponding subsequences of its left
child and its right child respectively. Then, its splitting value is maxs∈Sl

s.u.
Otherwise, it is a leaf node. We define f(Sx, α) =

∑
s∈Sx

(s.v − α · s.u)2. The
output θ of this leaf node is argminα f(Sx, α), denoted as out(Sx).

Initially, we have a singleton tree. There is the only one node which corre-
sponds to S. We split the PR-Tree recursively. For each node, there is a best
splitter S∗

l , i.e.,

S∗
l = argmin

Sl

{f(Sl, out(Sl)) + f(S\Sl, out(S\Sl)}.
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We enumerate the first i elements of Sx as Sl (Sr = S\Sl) to search the best
splitter S∗

l (line 3 to line 10 in Algorithm1). Note that since S is sorted and
f(Sl, α) is the sum of quadratic terms which is still quadratic. To obtain the
best splitter S∗

l , we can maintain the coefficients of f(Sl, α) and the minimum
of the quadratic term can be calculated in O(1) time. Each time when we enu-
merate a new subsequence, we only need to update the coefficients. Thus, we
can obtain the best splitter in O(|S|) time efficiently. We denote S∗

r = Sx\S∗
l . If

f(S∗
l , out(S∗

l )) + f(S∗
r , out(S∗

r )) < f(Sx, out(Sx)) − γ, we split the current node
into two child nodes with subsequences S∗

l and S∗
r respectively where γ is a

threshold to be specified. Otherwise, we terminate the recursion.
The readers may notice that such splitting procedure may cause a serious over-

fitting problem, i.e., the PR-Tree keeps splitting until each node only contains a
very short subsequence. To remedy this issue and reduce the generalization error,
we split S into two parts, the training part TR and the cross validation part CV .
We use TR to train PR-Tree, each time when a node is split, we qualify the current
PR-Tree on the cross-validation set CV and check whether if Q(CV ) decreases. If
the qualification on CV does not decrease, we undo the splitting operation (line
19 to line 21) and terminate the recursion. Otherwise, we split its children nodes
recursively (line 14 to line 17). See Algorithm 1 for the pseudo code.

6 Predicting Traffic Condition with STPGM

Despite that the PR-Tree performs well in most of our data (which we show in
Sect. 8), it does not consider the correlations between the road segments. Some
roads are easily affected by its neighbors, the congestions of its neighbors usually
lead to the congestion of its self in the next few time intervals. For such roads,
PR-Tree does not perform well. Motivated by this, we propose a probabilistic
graphical model called STPGM which is used in combination with the PR-Tree
in our system.

We first construct a spatial temporal probabilistic graph (STPG) Gp which
corresponds to a road network G. If a vehicle can travel from the road segment
ri to the road segment rj (or from rj to ri) directly, we say that ri and rj are
adjacent. We construct a vertex vi in Gp which corresponds to a road segment
ri in G. We add an edge between vi and vj if and only if the road segments ri

and rj are adjacent. For a specific vi, we use Neib(vi) to denote all the adjacent
vertices of vi. Intuitively, the adjacent road segments affect each other much more
significantly than the other road segments. Thus, each edge in Gp represents a
“strong effectiveness” in the road network.

6.1 States of STPGM

We first discretize the traffic conditions into different states. Recall that as we
claimed in Sect. 1, the traffic conditions and the transition patterns are very
different not only at different road segments, but also at different time intervals.
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However, for a specific road segment, we find that the traffic conditions and
transition patterns are usually similar for the time intervals with the same daily
index. For example, if the traffic is congested in 8 : 00, it usually stays congested
in next several time intervals. However, if the traffic is congested in 10 : 00, the
traffic becomes light in the next few minutes with a large probability. Motivated
by this, we consider different time intervals separately and use the same state
sets for the time intervals with the same daily index.

For a specific road segment ri, instead of clustering all of its traffic conditions
in series Orgi (which are widely used in the prior works [3,5,11,13]), we consider
the traffic conditions under different daily index separately. Formally, we consider
a specific daily index l ∈ [M ]. Recall that Ai

l = {oi
t|t ≡ l mod M}. We cluster the

traffic condition set Ai
l into k clusters with K-Medoids where k is a parameter to

be specified (see Sect. 8 for details). For example, if the daily index l corresponds
to 8 : 30–8 : 45 in a day, then we cluster the traffic conditions for all days during
8 : 30–8 : 45. We use the center ci

x,l of each cluster to represent a state, and
denote the set of the centers as Ci

l = {ci
1,l, . . . , c

i
k,l}. The state of the traffic

condition in the time interval t is represented by its nearest center in Ci
[t mod M ],

denoted as si
t. We show an example of a random selected road segment ri where

Ci
25 = {44, 48, 52, 58} and Ci

74 = {15, 25, 32, 38} (km/h). The time interval 25
corresponds to 6 : 00–6 : 15 where the traffic is usually light and the time interval
74 corresponds to 18 : 30–18 : 45 where the traffic is usually heavy.

6.2 Parameter Learning

We predict the traffic condition of a specific vertex (corresponds to a road seg-
ment) vi based on the historical traffic conditions of itself and its neighbors. We
assume that the traffic condition of vi in the time interval t + 1 is only related
with the traffic conditions of vi and Neib(vi) in the time interval t.

Formally, consider a vertex vi. Let {vi} ∪ Neib(vi) = {vi1 , . . . , vin} and the
corresponding states in time interval t are {ci

xi,t, c
i1
xi1 ,t, c

i2
xi2 ,t, . . . , c

in
xin ,t}. Our goal

is to learn the transition probability for all the possible states in Ci
(t+1) mod M , i.e.,

P (si
t+1 = ci

xi,t+1|si1
t = ci1

xi1 ,t, s
i2
t = ci2

xi2 ,t, . . . , s
in
t = cin

xin ,t)

=
P (si

t+1 = cxi
i,t+1, s

i1
t = ci1

xi1 ,t, , . . . , s
in
t = cin

xin ,t)

P (si1
t = ci1

xi1 ,t, . . . , s
in
t = cin

xin ,t)
(2)

For the prediction, it is unnecessary to compute the denominator, which
we show in Sect. 6.3. As for the numerator, the state space in Eq. 2 explodes
exponentially whereas the training data is relatively limited. It is not sufficient
to estimate the numerator precisely. Thus, we approximate the numerator of
Eq. 2 by

P (si
t+1 = cxi

i,t+1)
n∏

j=1

P (st
ij = c

xij

ij ,t|si
t+1 = ci

xi,t+1) (3)
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where P (st
ij

= c
xij

ij ,t|si
t+1 = ci

xi,t+1) indicates that given the observed state in the

time interval t + 1, the probability that the previous state of vij is c
xij

ij ,t.
We define the indicator function I(si

t, c
i
x,t) which indicates that whether the

state of the road segment ri in the time interval t equals ci
x,t. We use N =

∑
t′≡t mod M I(si

t′ , ci
x,t) to represent the total days that the state of the road

segment ri in the t mod M -th interval of each day is ci
x,t. Then, we calculate the

probability P (si
t = ci

x,t) by the frequency P (si
t = ci

x,t) = N/D. Similarly, for the
term P (st

ij
= c

xij

ij ,t|si
t+1 = ci

xi,t+1), we have

P (st
ij = c

xij

ij ,t|si
t+1 = ci

xi,t+1) =

∑
t′≡t mod M (I(si

t′+1, c
i
xi,t+1) · I(sij

t′ , c
ij
xij

,t))
∑

t′≡t mod M I(sij
t′+1, c

ij
xij

,t+1)
.

(4)
Thus, we get the approximation of the numerator of Eq. 2.

6.3 Prediction

Suppose the traffic conditions of the road network in time interval t are observed.
We first construct the states for each road segment ri. To predict the traffic
condition of a road segment ri, after obtaining the states of vi and Neib(vi) in
the time interval t, we use Eq. 2 to infer the probability of each state for vi in
the time interval t + 1. Then, we select the state with the largest probability as
the predicted state and the corresponding cluster center as the predicted traffic
condition. Note that as the denominator of Eq. 2 is a constant value when the
states of vi and Neib(vi) in the time interval t are given, it is actually unnecessary
to compute this denominator.

7 Model Extensions

Ensemble. We find that in the experiment, the performances of PR-Tree and
STPGM differ in different roads. Some roads are rarely affected by their neigh-
bors, such as the arterial roads. For such roads, PR-Tree outperforms STGPM.
However, as PR-Tree does not consider the correlations of the roads, STPGM
performs better than PR-Tree for the roads which are highly affected by its
neighbors, especially the roads that only few GPS records are observed. Our
prediction for traffic condition in the t + 1-th interval is a linear combination
of the previous traffic condition oi

t, the prediction obtained by PR-Tree and
STPGM. The weights of the linear combination is obtained by linear regression.
We show that in the experiment, by combining the models, our system achieves
a higher accuracy for the prediction.

Alternate of the Input Series.In fact, both the PR-Tree and STPGM are the
models which capture the correlations in a time series. Recall that in the PR-Tree
model, we use the time series Gap as the input. In STPGM, we use the traffic
condition time series Org as the input. Essentially, we can use the any time series
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related with the traffic as the input of both models and predict the traffic condi-
tion in a proper way. For example, if we use the Org as the input of a PR-Tree,
we actually try to approximate oi

t+1 by oi
t · θ(oi

t) and we predict the traffic con-
dition directly use θ(oi

t). Similarly, we can use the Gap as the input of STPGM.
Besides the proposed two series, we can also use the first order difference of Org
(i.e., Diff(Org) as defined in Sect. 2) as our input or the traffic conditions filtered
with Kalman filtering. The details are presented in Sect. 8.

8 Experimental Study

In this section, we evaluate the effectiveness and efficiency of the proposed models.

8.1 Experiment Setting

Data Set. In all experiments, we use the real dataset which consists of GPS
records collected from 12,000 taxis from November 1st to December 31st in
20121. The GPS data are map matched [7,14] to road network2 of Beijing. We
evaluate our algorithms on the data of November and December respectively.
For each month, we divide the data set into the training set (1st - 24th), and the
test set (25th - the last day). We distinguish two cases in our experiments: the
standard case and the sparse case. For the standard case, we select 10812 road
segments which contains more than 140 GPS records per day in average. In the
sparse case, we select 101672 road segments in which the GPS records occurred
in more than 10 time intervals per day in average. In all experiments, we focus
on the time period from 6 : 00 to 24 : 00 in each day since there are only few
GPS records observed during 00 : 00 to 6 : 00.

Measurement. We evaluate the performances of our models on the test
data set by Mean Absolute Error (MAE), Mean Relative Error (MRE) and
Mean Squared Error (MSE), i.e., MAE = 1

|E|
∑|E|

i=1

∑T
t=1 |pi

t − oi
t|, MRE =

1
|E|

∑|E|
i=1

∑T
t=1 |pi

t − oi
t|/oi

t, MSE = 1
|E|

∑|E|
i=1

∑T
t=1 (pi

t − oi
t)

2. Recall that we
evaluate our algorithms on the datasets of November and December respec-
tively. For convenience, for each model, we use the mean of the errors on the
two months as the final error. All the experiments are implemented parallelly
with Python 2.7 and run on a service on Open Stack (Intel Xeon E312 CPU of
16 cores with 2.1 GHz for each core and 32 GB memory on Ubuntu 14.04 LTS
operate system).

1 This data can be downloaded in http://www.datatang.com/data/45888.
2 This data can be downloaded in http://www.datatang.com/data/45422.

http://www.datatang.com/data/45888
http://www.datatang.com/data/45422
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8.2 Pre-processing

Data Cleaning. In the data cleaning phase, we eliminate the GPS records for
taxis which slow down or even stop for picking or attracting passengers. We
distinguish two cases of such records. One is boarding, i.e., the passengers get on
or get off the taxi. The other is balling, i.e., the taxis slow down or stop to attract
guests who need taxis. For the boarding state, the speed of the taxi usually varies
sharply in a short time. Therefore, once we detect such sharp variation of the
speed, we eliminate such GPS records. To handle the balling state, for a specific
road, we check the speeds of all taxis in this road in a specific time t. If the
speeds of most taxis are relatively high, only few of the taxis are driving at a
very low speed, we think such taxis are on the balling state and we eliminate
the corresponding GPS records.

Deal with Sparsity. Recall that as we claimed in Sect. 2, some road segments
may not contain any GPS record during the time interval t for some t ∈ [T ].
Thus, the corresponding traffic condition oi

t is not defined. To solve this issue,
for the road segment ri, if the GPS record set observed in the time interval t
is not empty, we define ōi

t as the average speed of the GPS records in the t-th
interval. Otherwise, we have ōi

t = −1. Let Ai
t = {ōi

t′ |t′ ≡ t mod M ∧ ōi
t′ 	= −1}

indicate the traffic conditions during the t mod M -th interval in each day. We
define āi

t as the mean of Ai
t and the series Bias = {bt = ōi

t − āi
t|∀ōi

t 	= −1}. Then,
for each pair of adjacent elements in Bias, we perform the linear interpolation to
obtain the undefined bi. For example, if Bias = {b1 = 3, b4 = 4.5, b7 = 10.5}, we
obtain a series {b1 = 3, b2 = 3.5, b3 = 4, b4 = 4.5, b5 = 6.5, b6 = 8.5, b7 = 10.5}
after performing linear interpolation. Finally, we have that the traffic condition
oi

t is obtained by oi
t = āi

t + bt.

8.3 Performance Evaluation

Performances of Different Models. We present the evaluations of our mod-
els. We first compare our model with the baseline Avg, i.e., predict the traf-
fic condition oi

t by its expected value ai
t. Furthermore, in the recent work,

Yang et al. [11] proposed STHMM for traffic condition prediction which is based
on a spatial temporal hidden markov model. We compare STHMM with our
models as well.

The results are shown in Fig. 7a, b. As we can see, the baseline (Avg) performs
worst in both cases. Despite that STHMM outperforms Avg in both cases, both
of our models PR-Tree and STPGM perform better than STHMM in our data
set. Moreover, in the standard case, PR-Tree performs better than STPGM
as shown in Fig. 7a whereas in the sparse case STPGM performs better. By
combining PR-Tree and STPGM, our system ETCPS achieves the best performs
in both two cases.

Verifying the Observed Patterns. Recall that as we claimed in Sect. 7, any
time series related with traffic can be taken as the input of both PR-Tree and
STPGM, and predict the traffic condition in the proper way. To illustrate the
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(a) All models (standard) (b) All models (sparse) (c) PR-Tree (standard)

(d) STPGM (standard) (e) STPGM (sparse) (f) Predict longer

Fig. 7. Performance analysis.

effects of the observations which we proposed in Sect. 3, we design four different
experiments with different time series and evaluate each experiment on PR-Tree
and STPGM respectively. The first two time series are Org and Gap = Org−Avg,
as we used in Sects. 5 and 6. Then, we use the first order difference of Org as
the input time series, denoted as Diff(Org). The t-th element in Diff(Org) is
ot+1 − ot. Furthermore, since the raw GPS records usually contain the noise
such as the GPS drift, we use Kalman filtering to process the traffic condition
series Org. We take the first order difference of the processed time series as the
input as well, denoted as Diff(Kal).

We show the experimental results in Fig. 7c–e. Both PR-Tree and STPGM
perform badly if we use Org as input directly. However, by using Diff(Org) and
Gap instead, the performances improve significantly which verifies our observa-
tions.

Predict Longer Time Intervals. The PR-Tree model can be also used to
predict the traffic conditions in the longer term. Given observations in interval
t denoted as ot, we first obtain the predicted traffic condition pt+1 and we take
pt+1 as the “true traffic condition” in the time interval t + 1 and obtain pt+2.
Iteratively, we obtain the prediction after m time intervals pt+m. In Fig. 7, we
show the performance of PR-Tree in predicting the traffic condition in the next 0
to 60 min and comparing with the Avg method. As m increases, the performance
becomes worse, but it is still better than Avg.

Effects of Time and Road Length. Figure 8 shows the effectiveness of our
prediction across time. We plot the average mean squared error of travel speed
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Fig. 8. MSE varies over day Fig. 9. RMAE varies over road length

(MSE) for the baseline Avg, STHMM and ETCPS respectively during differ-
ent hours for all days. The result shows that our system outperforms both the
baseline and STHMM.

To illustrate the effectiveness of the road length, in the Fig. 9, we show the
relation between MAE and the length of road segments. The result shows that
the road segments with longer length tend to have smaller MAE, i.e., our pre-
diction performs better for the road segments with longer lengths.

Running Time. Since the predictions of both PR-Tree and STPGM are simple
which can be done in real time, we only present the running time for training
our models in Fig. 10 and Table 2. From Table 2, we can see that the training
time cost of PR-Tree is very small. It takes only 3.26 min to process 105 roads.
However, STPGM takes a much longer time to train as shown in Table 2. Espe-
cially for the state formulation phase, clustering the traffic conditions is time
costing. It takes 176.6 min to process the state formulation phase for 105 roads.
We stress that SHTMM applies a complicated state formulation algorithm and
the state space is much larger than STPGM. In our data set, the time consuming
of SHTMM is 1718 ms per road whereas even for STPGM, it only takes 13.3 ms
per road to train the model.

Fig. 10. Time cost

Table 2. Time cost (Minutes)

Size PR-Tree State Formulation Parameter learning

103 0.04 1.72 0.22

104 0.46 17.46 2.09

5 ∗ 104 2.14 88.1 10.09

105 3.26 176.6 19.61
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9 Related Work

In this section, we review the related existing works. Most of prior works use the
probabilistic models to predict the traffic conditions. Hunter et al. [4] formulated
the traffic condition prediction in the arterial network to a maximum likelihood
problem and estimated the travel time distributions based on the observed route
travel times. Yeon et al. [12] estimated traffic conditions on a freeway using
Discrete Time Markov Chains (DTMC). However these works assumed that the
travel times on different road segments are independent without considering the
correlation between the traffic conditions on different roads which may lead to
incorrect prediction in the urban area [9].

To capture the correlations between road segments, Hofleitner et al. [3] formu-
lated the transitions between states among adjacent road segments as a dynamic
Bayesian network model and predicted the traffic conditions by an EM approach.
However, it did not consider the efficiency on the large scale data. Yuan et al.
[13] built a landmark graph based on the trajectories of taxis, where each node
(entitled a landmark) indicates a road segment each edge indicates the aggrega-
tion of taxis commutes between two landmarks. They formulated the correlations
and estimated the edge travel time distributions based on the landmark graph.
However, as the landmarks are selected from the top-k frequently traversed road
segments, many of road segments with sparse records can not be predicted.

The most related work with our model was proposed by Yang et al. [11]. They
proposed an algorithm called STHMM which is a spatio temporal hidden markov
model. They further presented an effective method to deal with the sparsity in
the data. However, they did not consider the heterogeneity of transition patterns
in different time intervals. In our experiment section (Sect. 8), we show that our
model outperform STHMM in both the efficiency and accuracy. We stress that
Chu et al. [2] considered the transition patterns in different time intervals and
proposed a time-vary dynamic network. However their goal is to reveal the causal
structure in a ring road system which differs from ours.

Furthermore, we stress two recent related works [1,10]. Wang et al. [10] pre-
sented an efficient algorithm to estimate the travel time of any path, based on
sparse trajectories generated by taxi in recent time slots and in history, by using
the tensor decomposition. Instead of predicting the traffic conditions, they stud-
ied the estimation of travel time for given travel paths in the current time slot.
Asghari et al. [1] estimated the travel time distributions based on the historical
sensor data. As their work studied the algorithm to find the most reliable route
for the travel planning, it has a related but different scope.

10 Conclusion

We study the effective and scalable methods for traffic condition prediction.
We propose an Ensemble based Traffic Condition Prediction System (ETCPS)
which combines two novel models called Predictive Regression Tree (PR-Tree)
and Spatial Temporal Probabilistic Graphical Model (STPGM). Our model is
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based on two useful observed correlations in the traffic condition data. Our sys-
tem provides high-quality prediction and can easily scale to very large datasets.
We conduct extensive experiments to evaluate our proposed models. The exper-
imental results demonstrate that comparing with the existing methods, ETCPS
is more efficient and accurate.

In the future, we plan to infer the traffic conditions by incorporating more
features from heterogeneous data sources, such as the weather condition, POI
information etc. Next, we will focus on the efficient way to deal with road seg-
ments which have extremely sparse trajectory records. Furthermore, we plan
to try different ensemble methods to combine the different models in order to
enhance the performance of the prediction.
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