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Our Goal Goal

Our Goal

Predict the traffic condition of each road in the urban area
after a few minutes or hours
using the current and historical traffic conditions

I extracted from taxi trajectories
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Challenges

Challenges

Data Explosion
I Large volume of GPS data.

Hard to extract patterns
I from traffic condition time series.

Varying Patterns
I Patterns vary significantly with time.

Hard to distinguish
I congestion and taxi picking passengers.
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Useful Observations

Useful Observations

Recall: Hard to extract patterns from traffic conditions time series.

oi
t : traffic condition of road ri at time t.
I the mean travel speed of taxi traveled on ri at time t.

Orgi = {oi
t |t = 1, . . . ,T} : traffic conditions time series

Transforming Orgi can reveal very strong autocorrelations
I Observation 1: Expectation-reality gap
I Observation 2: First order difference of traffic condition series
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Useful Observations Observation 1

Expectation-Reality Gap

Expected traffic condition: Avgi = {ai
t |t = 1, . . . ,T}

Expectation-Reality Gap
Gapi = Orgi −Avgi = {g i

t |g i
t = oi

t − ai
t , t = 1, . . . ,T}

I gt < 0, traffic condition at t is more congested than usual.
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Useful Observations Observation 2

First order difference of traffic condition series

Diff(Org) = {δi
t |δi

t = oi
t − oi

t−1, t = 2, . . . ,T}
Autocorrelation1 of Diff(Org) is shown with ACF2.

1The autocorrelation of a random process describes the correlation between
values of the process at different times with a time lag τ .

2ACF (Auto Correlation Function).
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Traffic condition prediction system System Overview

System Overview

Predictive Regression Tree (PR-Tree)
Spatial Temporal Probabilistic Graphical Model (STPGM)
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Traffic condition prediction system Predictive Regression Tree (PR-Tree)

Predictive Regression Tree (PR-Tree)

Intuitions:
regression tree based model
gt+1/gt is piecewise linear based on the observation.
Approximate gt+1 by ĝt+1 = gt · R(gt).
Use a decision tree to learn the function R(.)

By estimating gt+1, we thus obtain ôt+1 = at+1 + ĝt+1.

Dong Wang (IIIS, at THU) ETCPS February 21, 2017 12 / 34



Traffic condition prediction system Predictive Regression Tree (PR-Tree)

Structure (PR-Tree)

Each inner node is associated
with a splitting value.
Each leaf node has an output
value θ.
Inner nodes split the input space
into several subspaces.
Leaf nodes indicate the
corresponding value of the
subspaces.
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Given input gt , binary search the value of corresponding
subspace and take it as the estimation of R(gt).
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Traffic condition prediction system Predictive Regression Tree (PR-Tree)

Example (PR-Tree)

Given a PR-Tree of road ri , the current traffic condition ot = 45, assume
the expected traffic condition on t and t + 1 are at = 40, at+1 = 43.
Objective: predict ot+1.

Solution:
gt = ot − at = 5
put gt into the PR-Tree, we
get R(gt) = 0.7.
approximate gt+1 by
ĝt+1 = gt · R(gt) = 3.5
estimate ot+1 by
ôt+1 = at+1 + ĝt+1 = 46.5.
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Traffic condition prediction system Predictive Regression Tree (PR-Tree)

Training Method (PR-Tree)

Input: Series Gap = {g1, . . . , gT}.
Objective: Find R∗ = argminR

∑
t∈[1,T )(gt+1 − R(gt) · gt)

2.
Algorithm:

I Step 1.1: Define sj = (gj , gj+1) and sort all sj with s(1)j .
I Step 1.2: Define f (S) = minα

∑
j∈[1,T )(s

(2)
j − α · s(1)j )2
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Traffic condition prediction system Predictive Regression Tree (PR-Tree)

Training Method (PR-Tree)

Input: Series Gap = {g1, . . . , gT}.
Objective: Find R∗ = argminR

∑
t∈[1,T )(gt+1 − R(gt) · gt)

2.
Algorithm:

I Step 2: Find Sl ∈ Prefix(S) s.t. f (Sl) + f (Sr ) is minimized.
(Sr = S − Sl).
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Traffic condition prediction system Predictive Regression Tree (PR-Tree)

Training Method (PR-Tree)

Input: Series Gap = {g1, . . . , gT}.
Objective: Find R∗ = argminR

∑
t∈[1,T )(gt+1 − R(gt) · gt)

2.
Algorithm:

I Step 3: If f (Sl) + f (Sr ) < f (S)− γ, split the current node recursively.
Let the splitting value be s(1)j .

Inner Node

Case 1:
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Traffic condition prediction system Predictive Regression Tree (PR-Tree)

Training Method (PR-Tree)

Input: Series Gap = {g1, . . . , gT}.
Objective: Find R∗ = argminR

∑
t∈[1,T )(gt+1 − R(gt) · gt)

2.
Algorithm:

I Step 4: Otherwise, let the current node be a leaf node and set the
output value as argminα

∑
j∈[1,T )(s

(2)
j − α · s(1)j )2.

Leaf Node

Case 2:
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Traffic condition prediction system System Overview

System Overview
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Traffic condition prediction system Spatial Temporal Probabilistic Graph Model (STPGM)

Spatial Temporal Probabilistic Graph (STPGM)

Intuitions:
PR-Tree does not consider the correlation between the road segments;
Some roads are easily affected by its neighbors.
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Traffic condition prediction system Spatial Temporal Probabilistic Graph Model (STPGM)

States of STPGM

Discretize the traffic conditions into different states.
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Traffic condition prediction system Spatial Temporal Probabilistic Graph Model (STPGM)

Parameter Learning of STPGM

Consider a road ri , let {ri} ∪ Neib(ri) = {ri1 , . . . , rin} and the
corresponding states at time t are {c i

xi ,t , c
i1
xi1 ,t , c i2

xi2 ,t , . . . , c in
xin ,t}.

Our goal:

P(s i
t+1 = c i

xi ,t+1|s
i1
t = c i1

xi1 ,t , s i2
t = c i2

xi2 ,t , . . . , s in
t = c in

xin ,t)

∝ P(s i
t+1 = cxi

i ,t+1, s
i1
t = c i1

xi1 ,t , , . . . , s in
t = c in

xin ,t) (1)

The state space in Equation 1 explodes exponentially.
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Traffic condition prediction system Spatial Temporal Probabilistic Graph Model (STPGM)

Parameter Learning of STPGM

Approximate Equation 1 by

P(s i
t+1 = cxi

i ,t+1)
n∏

j=1
P(st

ij = c
xij
ij ,t |s

i
t+1 = c i

xi ,t+1)

Only need to calculate
I P(s i

t+1 = cxi
i ,t+1)

I P(s t
ij = c

xij
ij ,t |s i

t+1 = c i
xi ,t+1)
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Traffic condition prediction system Spatial Temporal Probabilistic Graph Model (STPGM)

Prediction of STPGM

Given the traffic conditions of the road network at time t:

Obtain the states of ri and Neib(ri) at time t
Use Equation 1 to infer the probability of each state for ri at time t
Select the state with the largest probability as the predicted state and
the corresponding cluster center as the predicted traffic condition.

Dong Wang (IIIS, at THU) ETCPS February 21, 2017 24 / 34



Traffic condition prediction system Ensemble

Ensemble

The performances of PR-Tree and STPGM differ in different roads.
I For roads which are rarely affected by their neighbors PR-Tree wins
I For the roads which are highly affected by its neighbors, especially the

roads that only few GPS records are observed STPGM wins

Our prediction system ETCPS combines these two models, and the
experiments show that it achieves a higher accuracy for the prediction.
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Traffic condition prediction system Model Extension

Alternate of the model input

Recall:
I Gap as the input of PR-Tree.
I Org as the input of STPGM.

The input of our models can be any time series:
I Gap, Org, Diff(Org), Diff(Kal) . . .

Note: Kal is Org filtered with Kalman filtering.
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Experiment Study Experiment Setting

Experiment Setting

Data set:
I Taxi Trajectories: Generated by 12,000 taxicabs in Beijing, from Nov.

1 to Dec. 31, 2012.
I Road networks: 10,812 roads (Standard) and 101,672 roads (Sparse).

Measurement:
I MAE = 1

|E |
∑|E |

i=1
∑T

t=1 |pi
t − oi

t | Mean Absolute Error
I MRE = 1

|E |
∑|E |

i=1
∑T

t=1 |pi
t − oi

t |/oi
t Mean Relative Error

I MSE = 1
|E |

∑|E |
i=1

∑T
t=1 (pi

t − oi
t)

2 Mean Squared Error
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Experiment Study Performance Evaluation

Performance Evaluation

Performance of different models
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STHMM (Spatio-Temporal Hidden Markov Model) is proposed by Yang, B. et al in VLDB 13,
which is similar to STPGM, using Mixture Gaussian to model traffic condition states, and using
coupled HMM to model the interactions among roads.
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Experiment Study Performance Evaluation

Performance Evaluation

Verifying the observed patterns: using Diff(Org) and Gap as
input, the performances improve significantly.
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Figure: STPGM(STD)

Diff(Kal) represents the first order difference of Kalman Filtered
traffic condition time series. Org-Avg represents the Gap.

Dong Wang (IIIS, at THU) ETCPS February 21, 2017 30 / 34



Experiment Study Performance Evaluation

Performance Evaluation

Training time cost
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Size PR-Tree State
Formulation

Parameter
Learning

103 0.04 1.72 0.22
104 0.46 17.46 2.09

5 ∗ 104 2.14 88.1 10.09
105 3.26 176.6 19.61

Figure: Training time cost (Minutes)

Dong Wang (IIIS, at THU) ETCPS February 21, 2017 31 / 34



Conclusion

Outline

1 Our Goal

2 Challenges

3 Useful Observations

4 Traffic condition prediction system

5 Experiment Study

6 Conclusion

Dong Wang (IIIS, at THU) ETCPS February 21, 2017 32 / 34



Conclusion

Conclusion

A very fundamental but challenging task
I Data Explosion
I Hard to extract patterns
I Varying Patterns
I Hard to distinguish

We present two useful observed correlations in the traffic condition
data, which are the bases of our design.
Our method

I Predictive Regression Tree Model (PR-Tree)
I Spatial Temporal Probabilistic Graph Model (STPGM)

Our system provides high-quality predictions and can easily scale to
very large datasets.
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