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Abstract—The online car-hailing service has gained great
popularity all over the world. As more passengers and more
drivers use the service, it becomes increasingly more important
for the the car-hailing service providers to effectively schedule the
drivers to minimize the waiting time of passengers and maximize
the driver utilization, thus to improve the overall user experience.
In this paper, we study the problem of predicting the real-time
car-hailing supply-demand, which is one of the most important
component of an effective scheduling system. Our objective is to
predict the gap between the car-hailing supply and demand in
a certain area in the next few minutes. Based on the prediction,
we can balance the supply-demands by scheduling the drivers
in advance. We present an end-to-end framework called Deep
Supply-Demand (DeepSD) using a novel deep neural network
structure. Our approach can automatically discover complicated
supply-demand patterns from the car-hailing service data while
only requires a minimal amount hand-crafted features. Moreover,
our framework is highly flexible and extendable. Based on our
framework, it is very easy to utilize multiple data sources (e.g.,
car-hailing orders, weather and traffic data) to achieve a high
accuracy. We conduct extensive experimental evaluations, which
show that our framework provides more accurate prediction
results than the existing methods.

I. INTRODUCTION

Online car-hailing apps/platforms have emerged as a novel
and popular means to provide on-demand transportation service
via mobile apps. To hire a vehicle, a passenger simply types in
her/his desired pick up location and destination in the app and
sends the request to the service provider, who either forwards
the request to some drivers close to the pick up location, or
directly schedule a close-by driver to take the order. Comparing
with the traditional transportation such as the subways and
buses, the online car-hailing service is much more convenient
and flexible for the passengers. Furthermore, by incentivizing
private cars owners to provide car-hailing services, it promotes
the sharing economy and enlarges the transportation capacities
of the cities. Several car-hailing mobile apps have gained great
popularities all over the world, such as Uber, Didi, and Lyft.
Large number of passengers are served and volume of car-
hailing orders are generated routinely every day. For example,
Didi, the largest online car-hailing service provider in China,
handles around 11 million orders per day all over China. 1

Due to the large number of drivers and passengers use
the service, several issues arise: Sometimes, some drivers
experience a hard time to get any request since few people
nearby call the rides; At the same time, it is very difficult

1Homepage: http://www.xiaojukeji.com/en/index.html

for some passengers to get the ride, in bad weather or
rush hours, because the demand in the surrounding areas
significantly exceeds the supply. Hence, it is an very important
yet challenging task for the service providers to schedule the
drivers in order to minimize the waiting time of passengers
and maximize the driver utilization. One of the most important
ingredient of an effective driver scheduler is the supply-demand
prediction. If one could predict/estimate how many passengers
need the ride service in a certain area in some future time slot
and how many close-by drivers are available, it is possible
to balance the supply-demands in advance by dispatching the
cars, dynamically adjusting the price, or recommending popular
pick-up locations to some drivers.

In this paper, we study the problem of predicting the
car-hailing supply-demand. More concretely, our goal is to
predict the gap between the car-hailing supply and demand
(i.e., max(0, demand− supply)) for a certain area in the next
few minutes. Our research is conducted based on the online
car-hailing order data of Didi. To motivate our approach, we
first present some challenges of the problem and discuss the
drawback of the current standard practice for such problem.

• The car-hailing supply-demand varies dynamically due
to different geographic locations and time intervals. For
example, in the morning the demand tends to surge in
the residential areas whereas in the evening the demand
usually tends to surge in the business areas. Furthermore,
the supply-demand patterns under different days of a week
can be extremely different. Prior work usually distinguishes
different geographic locations, time intervals or days of
week and build several sub-models respectively [1]–[4].
Treating the order data separately and creating many sub-
models are tedious, and may suffer from the lack of training
data since each sub-model is trained over a small part of
data.

• The order data contains multiple attributes such as the
timestamp, passenger ID, start location, destination etc, as
well as several “environment” factors, such as the traffic
condition, weather condition etc. These attributes together
provide a wealth of information for supply-demand predic-
tion. However, it is nontrivial how to use all the attributes
in a unified model. Currently, the most standard approach is
to come up with many “hand-crafted” features (i.e., feature
engineering), and fit them into an off-the-shelf learning
algorithm such as logistic regression or random forest.
However, feature engineering typically requires substantial
human efforts (it is not unusual to see data science/ machine
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(a) First area on March 9th
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(b) First area on March 13th
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(c) Second area on March 9th
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(d) Second area on March 13th

Fig. 1. Car-hailing demands under four different situations.

learning practitioners creating hundreds different features
in order to achieve a competitive performance) and there is
little general principle how this should be done. Some prior
work only keeps a subset of attributes for training, such as
the timestamp, start location and drops other attributes [2]–
[6]. While this makes the training easier, discarding the
attributes leads to the information loss and reduces the
prediction accuracy.

To provide some intuitions for the readers and to illustrate
the challenges, we provide an example in Fig.1.

Example 1: Fig. 1 shows the demand curves for two areas
on March 9th (Wednesday) and March 13th (Sunday). From
the figure, we can see very different patterns under different
timeslots for the two areas. For the first area, few people require
the car-hailing services on Wednesday. However, the demand
increased sharply on Sunday. Such pattern usually occurs in the
entertainment area. For the second area, we observe a heavy
demand on Wednesday, especially during two peak hours around
8 o’clock and 19 o’clock (which are the commute times for
most people during the weekdays). On Sunday, the demand of
car-hailing services on this area reduced significantly. Moreover,
the supply-demand patterns change from day to day. There are
many other complicated factors that can affect the pattern, and
it is impossible to list them exhaustively. Hence, simply using
the average value of historic data or empirical supply-demand
patterns can lead to quite inaccurate prediction results, which
we show in our experiments (see Section VI).

To address the above challenges, we propose an end-to-
end framework for supply-demand prediction, called Deep
Supply-Demand (DeepSD). Our framework is based on the
deep learning technique, which has successfully demonstrated
its power in a number of application domains such as vision,
speech and natural language processing [7]–[9]. In particular,
we develop a new neural network architecture, that is tailored
to our supply-demand prediction task. Our model demonstrates
a high prediction accuracy, requires little hand-crafted feature,
and can be easily extended to incorporate new dataset and
features. A preliminary version of our model achieved the 2nd
place among 1648 teams in the Didi supply-demand prediction
competition.2 Our technical contributions are summarized
below:

• We proposed an end-to-end framework based on a deep
learning approach. Our approach can automatically learn

2http://research.xiaojukeji.com/competition/main.action?competitionId=
DiTech2016. The preliminary model we used for the competition was almost
the same as the basic version of our model described in Section IV. Our final
model, described in Section V, further refines the basic model by introducing
a few new ideas, and is more stable and accurate. We are currently in an effort
of deploying the model and incorporate it into the scheduling system in Didi.

the patterns across different spatio-temporal attributes (e.g.
geographic locations, time intervals and days of week),
which allows us to process all the data in a unified model,
instead of separating it into the sub-models manually.
Comparing with other off-the-shelf methods (e.g., gradient
boosting, random forest [10]), our model requires a minimal
amount feature-engineering (i.e., hand-crafted features), but
produces more accurate prediction results.

• We devise a novel neural network architecture, which is
inspired by the deep residual network (ResNet) proposed
very recently by He et al. [11] for image classification.
The new network structure allows one to incorporate the
“environment factor” data such as the weather and traffic
data very easily into our model. On the other hand, we can
easily utilize the multiple attributes contained in the order
data without much information loss.

• We utilize the embedding method [9], [12], a popular
technique used in natural language processing, to map the
high dimensional features into a smaller subspace. In the
experiment, we show that the embedding method enhances
the prediction accuracy significantly. Furthermore, with
embedding, our model also automatically discovers the
similarities among the supply-demand patterns of different
areas and timeslots.

• We further study the extendability of our model. In real
applications, it is very common to incorporate new extra
attributes or data sources into the already trained model.
Typically we have to re-train the model from the scratch.
However, the residual learning component of our model
can utilize these already trained parameters by a simple
fine tuning strategy. In the experiment, we show that the
fine-tuning can accelerate the convergence rate of the model
significantly.

• Finally, we conduct extensive experiments on a large
scale real dataset of car-hailing orders from Didi. The
experimental results show that our algorithm outperforms
the existing method significantly. The prediction error of
our algorithm is 11.9% lower than the best existing method.

II. FORMULATION AND OVERVIEW

We present a formal definition of our problem. We divide
a city into N non-overlapping square areas a1, a2, . . . , aN and
each day into 1440 timeslots (one minute for one timeslot).
Then we define the car-hailing orders in Definition 1.

Definition 1 (Car-hailing Order): A car-hailing order o is
defined as a tuple: the date when the car-hailing request was sent
o.d, the corresponding timeslot o.ts ∈ [1, 1440], the passenger



ID o.pid, the area ID of start location o.locs ∈ [N ] and the
area ID of destination o.locd ∈ [N ]. If the a driver answered
the request, we say it is a valid order. Otherwise, if no driver
answered the request, we say it is an invalid order.

Definition 2 (Supply-demand Gap): For the d-th day, the
supply-demand gap of the time interval [t, t + C) in area a
is defined as the total amount of invalid orders in this time
interval. We fix the constant C to be 10 in this paper3 and we
denote the corresponding gap as gapd,ta .

We further collected the weather condition data and traffic
condition data of different areas which we refer to as the
environment data.

Definition 3 (Weather Condition): For a specific area a at
timeslot t in the d-th day, the weather condition (denoted as
wc) is defined as a tuple: the weather type (e.g., sunny, rainy,
cloudy etc.) wc.type, the temperature wc.temp and the PM2.5
wc.pm. All areas share the same weather condition at the same
timeslot.

Definition 4 (Traffic Condition): The traffic condition de-
scribes the congestion level of road segments in each area:
from Level 1 (most congested) to Level 4 (least congested).
For a specific area a at timeslot t in the d-th day, the traffic
condition is defined as a quadruple: the total amount of road
segments in area a under four congestion levels.

Now, we can define our problem as below.

Problem Suppose the current date is the d-th day and the
current time slot is t. Given the past order data and the past
environment data, our goal is to predict the supply-demand
gap gapd,ta for every area a, i.e., the supply-demand gap in the
next 10 minutes.

Our paper is organized as follows. We first present several
preliminaries in Section III, including the embedding method
and the residual network which we mentioned in the intro-
duction part. Then, we show a basic version of our model in
Section IV. The basic version adopt a simple network structure
and only uses the order data in the current day. In Section V,
we present an advanced version which is an extension of the
basic version. The advanced version utilize more attributes in
the order data and it further incorporates the historical order
data to enhance the prediction accuracy. In Section VI we
conduct extensive experiment evaluations. Finally, we briefly
review some related work in Section VII and conclude our
paper in Section VIII.

III. PRELIMINARY

A. Embedding Method

Embedding method is a feature learning technique which is
widely used in Deep Learning, especially in natural language
processing (NLP) tasks [9], [12], [13]. It is a parameterized
function which maps the categorical values to the real numbers.

Specifically, neural networks treat every input as a real value.
A simple way to transform a categorical value to real numbers
is one-hot representation. For example, suppose the value of a
categorical feature is 3 and the corresponding vocabulary size
(highest possible value) is 5. Then, its one-hot representation
is (0, 0, 1, 0, 0). However, using such representation can be

3The constant 10 (minutes) is due to the business requirement. It can be
replaced by any other constant.
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Fig. 2. Residual Network

computationally expensive when the vocabulary size is huge.
Moreover, such representation does not capture the similarity
between different categories.

The embedding method overcomes such issues by mapping
each categorical value into a low-dimensional space (relative to
the vocabulary size). For example, the categorical value with
one-hot representation equal to (0, 0, 1, 0, 0) can be represented
as the form of (0.2, 1.4, 0.5). Formally, for each categorical
feature, we build an embedding layer with parameter matrix
W ∈ RI×O. Here I is the vocabulary size of input categorical
value and O is the dimension of the output space (which we
refer to as the embedding space). For a specific categorical
value i ∈ [I], we use onehot(i) ∈ R1×I to denote its one-
hot representation. Then, its embedded vector embed(i) ∈
R1×O is equal to onehot(i) multiply the matrix W , i.e., the
i-th row of matrix W . We usually have that O � I . Thus,
even the vocabulary size is very large, we can still handle
these categorical values efficiently. Furthermore, an important
property of embedding method is that the categorical values
with similar semantic meaning are usually very close in the
embedding space. For example in our problem, we find that if
two different areas share similar supply-demand patterns, then
their area IDs are close in the embedding space. See Section
VI for the details. We stress that the parameter matrix W in
the embedding layer is optimized with other parameters in the
network. We do not train the Embedding Layers separately.

B. Residual Network

Many non-trivial tasks have greatly benefited from very deep
neural networks, which reveals that network depth is of crucial
importance [14]–[16]. However, an obstacle to train a very
deep model is the gradient vanishing/exploding problem, i.e.,
the gradient vanishes or explodes after passing through several
layers during the backpropagation [17], [18]. To overcome
such issue in deep neural networks, He et al. [11] proposed a
new network architecture called the residual network (ResNet),
which allows one to train very deep convolutional neural
networks successfully.

The residual learning adds the shortcut connections (dashed
line in Fig. 2) and direct connections (solid line in Fig. 2)
between different layers. Thus, the input vector can be directly
passed to the following layers though the shortcut connections.
For example, in Fig. 2, we use x to denote the input vector and
H(x) to denote the desired mapping after two stacked layers. In
the residual network, instead of learning the mapping function
H(x) directly, we learn the residual mapping F(x) = H(x)−x
and broadcast F(x) + x to the following layers. It has been
show that optimizing the residual mapping is much easier than
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optimizing the original mapping [11], which is the key to the
success of deep residual network.

IV. BASIC VERSION

We first present the basic version of our model in this
section. In Section V, we extend the basic version with a few
new ideas, and present the advanced version of our model. The
basic model consists of three parts. Each part consists of one
or more blocks (recall that the block is the base unit of our
model). In Section IV-A, we first process the “identity features”
(area ID, timeslot, day of week) in the identity part. Next in
Section IV-B, we describe the order part which processes the
order data. The order part is the most important part of our
model. In Section IV-C, we present the environment part. The
environment part processes the weather data and traffic data.
Finally, in Section IV-D, we illustrate how we connect different
blocks. The structure of our basic model is shown in Fig. 3.

A. Identity Part

The identity part consists of one block called the identity
block. We call the features which identify the data item we
want to predict as the “identity features”. The identity features
include the ID of area AreaID, the timeslot TimeID and the
day of week (Monday, Tuesday, ..., Sunday) WeekID. For
example, if we want to predict the supply-demand gap of area
a in the time interval [t, t+ 10) in the d-th day and that day
is Monday, then we have that AreaID = a, TimeID = t and
WeekID = 0.

Note that the features in the identity block are categorical.
As we mentioned in Section III, we can either using the one-
hot representation or embedding representation to transform
the categorical values to real numbers. In our problem, since
the vocabularies of AreaID and TimeID are very large, the
one-hot representation leads to a high cost. Moreover, the
one-hot representation treats the different areas or timeslots
independently. However, we find that different areas at different
time can share similar supply-demand patterns, especially when
they are spatio-temporally close. For example, the demands of
car-hailing are usually very heavy for all the areas around the
business center at 19:00. Clustering these similar data items
helps enhance the prediction accuracy. In our model, we use

Concatenate Layer

AreaID TimeID

Embed Embed

WeekID

Embed

Identity Block

Fig. 4. Identity Block

the embedding method to reduce the feature dimensions and
discover the similarities among different areas and timeslots.

Formally, the structure of the identity part is shown in
Fig. 4. We use three Embedding Layers to embed AreaID,
TimeID and WeekID respectively. We then concatenate the
outputs of three Embedding Layers by a Concatenate Layer.
The Concatenate Layer takes a list of vectors as the input and
simply outputs the concatenation of the vectors. We use the
output of the Concatenate Layer as the output of the identity
block, denoted as Xid. Furthermore, we stress that prior work
[1], [3], [19] also clusters the similar data items to enhance the
prediction accuracy. However, they treat the clustering stage
as a separate sub-task and they need to manually design the
distance measure, which is a non-trivial task. Our model is
end-to-end and we can optimize the embedding parameters
together with other parameters in the neural network. Hence
we do not need to design any distance measure separately.
The parameters are optimized through backpropagation towards
minimizing the final prediction loss.

B. Order Part

The order part in the basic version consists only one block
called the supply-demand block. The supply-demand block can
be regarded as a three layer perception, which processes the
order data. For a specific area a, to predict the supply-demand
gap gapd,ta of the time interval [t, t+ 10) in the d-th day, we
consider the order set with timestamp in [t− L, t) of the d-th
day, which we denote as Sd,t. Here L is the window size which
is specified as 20 minutes in the experiment section (Section
VI). We then aggregate Sd,t into a real-time supply-demand
vector.

Definition 5 (Real-time supply-demand vector): For a spe-
cific area a, we define the real-time supply-demand vector in
the d-th day at timeslot t as V d,t

sd . V d,t
sd is a 2L-dimensional

vector, which consists of two parts. We denote the first L
dimensions of V d,t

sd as VA
d,t
sd . The `-th dimension of VA

d,t
sd is

defined as:

VA
d,t
sd (`) = |{o | o is valid ∧ o ∈ Sd,t ∧ o.ts = t− `}|

In another word, VA
d,t
sd (`) describes the amount of valid orders

at t− ` in the current day. Similarly, we define the rest part as
VB

d,t
sd which corresponds to the invalid orders in the previous

L minutes.

We use V d,t
sd as the Input Layer of the supply-demand block.

We then pass V d,t
sd through two Fully-Connected (abbr. FC)

layers. A Fully-Connected Layer with input x is defined as

FCsz(x) = f(x ·W + b)
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where sz is the corresponding output size, W,b are the
parameters and f is the activation function which we specify
in Section VI. We use FC64 as the first Fully-Connected Layer
and the FC32 as the second Fully-Connected Layer. The output
of the supply-demand block is the output of FC32, denoted as
Xsd. See Fig 5 for illustration.

C. Environment Part

In the environment part, we incorporate the information
from the weather data through adding the weather block to the
network and the traffic data through the traffic block.

For the weather condition, we first create a weather
condition vector V d,t

wc . We show the structure of the weather
block in Fig. 6. The vector V d,t

wc consists of L parts. For a
specific ` ∈ [L], we have the weather condition wc at timeslot
t−` in the d-th day and we embed the weather type wc.type into
a low dimensional space. Then the `-th part of V d,t

wc is defined
as the concatenation of the embedded weather type wc.type,
the temperature wc.temp and the PM 2.5 wc.pm. Furthermore,
note that the weather block also receives the output of the
supply-demand block Xsd through a direct connection. We
concatenate Xsd and V d,t

wc by a Concatenate Layer and pass the
output of the Concatenate Layer through two Fully-Connected
layers FC64 and FC32. We denote the output of FC32 as Rwc.
Then, the output of the weather block Xwc is defined as:

Xwc = Xsd ⊕Rwc

where ⊕ is the element-wise add operation and Xsd is obtained
through the shortcut connection.

Note that the structure we used here is similar with ResNet
as we mentioned in Section III. However, there are two main
differences between our model and ResNet. First, instead of
adding shortcut connections between layers, we add the shortcut
connections between different blocks. Second, in ResNet, a
layer only receives the input from previous layers through a
direct connection whereas in our model a block receives the
inputs from both the previous block and the dataset. Such
structure on one hand is more suitable for handling the data
from multiple sources. On the other hand, we show that in
Section VI-H, such structure is highly extendable. We can
easily incorporate new datasets or attributes into our model
based on such structure.

For the traffic condition, recall that at each timeslot the
traffic condition of a specific area can be represented as the
total amount of road segments in four different congestion
levels. We thus create a traffic condition vector V d,t

tc with L
parts. Each part consists of four real values corresponding to
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Fig. 6. Weather Block and Traffic Block

the traffic condition at that time slot. We construct the traffic
block in the same way as we construct the weather block. Then,
we use Xtc = Xwc ⊕Rtc as the output of the traffic block, as
shown in Fig. 6.

D. Block Connections

We then connect all the blocks. Note that the supply-demand
block, the weather block and the traffic block are already
connected through the residual learning. The output vector of
these stacked blocks is Xtc. We then concatenate the output
of the identity block Xid and Xtc with a Concatenate Layer.
We append a Fully-Connected Layer FC32 and a single neuron
after the Concatenate Layer. The single neuron finally outputs
the predicted supply-demand gap with the linear activation
function, as shown in Fig. 3. We stress that our model is end-
to-end, once we obtain the predicted value, we can calculate
the loss based on the loss function and update each parameter
with its gradient through backpropagation.

We further illustrate the intuition of our model. To predict
the supply-demand gap, the most relevant and important data
is the car-hailing order data. We use the supply-demand block
to learn the useful feature vector from the order data. In our
model, the learnt feature corresponds to the output of the supply-
demand block, Xsd. The environment data can be regarded
as the supplementary of the learnt features. Thus, we add
the weather block to extract the residual Rwc and adjust the
previous learnt features by adding Rwc to Xsd. The same
argument holds for the traffic block.

V. ADVANCED VERSION

In this section, we present an advanced version of our
model. Comparing with the basic model, the advanced model
replaces the order part in Fig. 3 with an extended order part
as shown in Fig. 7, which is composed of three blocks. The
first block extended supply-demand block extends the original
supply-demand block with a well-designed structure. Such
structure enables our model to learn the dependence of the



historical supply-demand over different days automatically,
which we present in Section V-A. In Section V-B, we present
the remaining two blocks, the last call block and the waiting
time block, which have the same structure as the extended
supply-demand block. Comparing with the basic version where
we only use the number of orders, the new blocks contains
passenger information as well.

A. Extended supply-demand block

Recall that in the basic version, we use the real-time supply-
demand vector V d,t

sd to predict the supply-demand gap. In the
extended order block, we further incorporate the historical order
data to enhance the prediction accuracy, i.e., the car-hailing
orders with date prior to the d-th day. We present the extended
supply-demand block in two stages. In the first stage, we obtain
an empirical supply-demand vector in time interval [t− L, t)
in the d-th day. Such empirical supply-demand vector is an
estimation of V d,t

sd based on the historical order data. In the
second stage, we use the real-time supply-demand vector and
the empirical supply-demand vector to construct our extended
supply-demand block.

1) First Stage: We first extract the empirical supply-demand
vector in [t − L, t) in the d-th day, denoted as Ed,t

sd . It has
been shown that due to the regularity of human mobility, the
patterns in the traffic system usually show a strong periodicity
in time on a weekly basis [1]–[3], [5], [20], [21]. However, for
different days of week, the supply-demand patterns can be very
different. For example, in Huilongguan, a district in Beijing
where most of IT employees live, the demand of car-hailing
services in Monday morning is usually much more than that
in Sunday morning. Motived by this, we first consider the
historical supply-demands in different days of week. Formally,
we use M to denote all the Mondays prior to the d-th day.
For each day m ∈ M, we calculate the corresponding real-
time supply-demand vector in that day, denoted as V m,t

sd as we
defined in Definition 5. We average the vectors V m,t

sd for all
m ∈ M. We call such average the historical supply-demand
vector on Monday, denoted as H

(Mon),d,t
sd . Thus, we have that,

H
(Mon),d,t
sd =

1

|M|
∑

m∈M
V m,t
sd .

Similarly, we define the historical supply-demand vector on
the other days of week: H(Tue),d,t

sd , H(Wed),d,t
sd , . . ., H(Sun),d,t

sd .

The empirical supply-demand vector Ed,t
sd is defined as

a weighted combination of {H(Mon),d,t
sd , . . . ,H

(Sun),d,t
sd }. We

refer to the weight vector as combining weights of different
weekdays, denoted as p. In our model, such weight vector p
is automatically learnt by the neural network according to the
current AreaID and WeekID. The network structure is shown
in Fig. 8. We first embed the current AreaID and WeekID
into a low-dimensional space. We concatenate the embedded
vectors and pass it into a Softmax Layer. A Softmax Layer
takes the concatenation x as the input and outputs the weight
vector p by

p(i) =
ex·W.i∑
j e

x·W.j
,∀i = 1 . . . 7

where W.j is the j-th column of the parameter matrix W in
the Softmax Layer. Then, we have that

Ed,t
sd = p(1) ·H(Mon),d,t

sd + . . .+ p(7) ·H(Sun),d,t
sd . (1)

Extended Wait Time Block

+
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Extended Supply-demand  Block

+

Extended Order Part

Fig. 7. Extended Order Part
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We stress that most of prior work simply distinguish the
historical data in weekdays and weekends separately [1]–[3],
[6], [22]. However, on one hand, such method may suffers
from the lack of training data. We only utilizes part of the data
when we calculate the historical supply-demand vector. On the
other hand, different areas can show different dependences over
days of week. For example, in our experiment (Section VI), we
find that for some areas, the supply-demands in Tuesdays are
very different from the other days of week. Thus, to predict the
supply-demand in Tuesday, we mainly consider the historical
data in the past Tuesdays. For some other areas, the supply-
demands in all the days of week are very similar. In this case,
taking all the historical data into consideration leads to a more
accurate result. Obviously, simply separating the historical data
in weekdays and weekends can not such patterns.

2) Second Stage: Next, we use the obtained empirical
supply-demand vector and real-time supply-demand vector to
construct our block. First, using the same method as we obtain
Ed,t

sd , we calculate another empirical supply-demand vector in
time interval [t−L+10, t+10) in the current day, denoted as
Ed,t+10

sd . Note that Ed,t+10
sd is the empirical estimation of the

real-time supply-demand vector V d,t+10
sd . If we can estimate

V d,t+10
sd accurately, we can easily predict the currently supply-

demand gap.

In our model, we use the empirical estimations Ed,t
sd ,

Ed,t+10
sd and the real-time supply-demand vector V d,t

sd to
estimate V d,t+10

sd . We first use the Fully-Connection Layers to
project these three vectors onto the same low-dimensional
space (in our experiment we fix the dimensionality to be
16). We denote the projected vectors as Proj(V d,t

sd ), Proj(Ed,t
sd )

and Proj(Ed,t+10
sd ). Instead of estimating V d,t+10

sd directly, we
estimate the projection of V d,t+10

sd . We denoted the estimated



Concatenate Layer

FC16 FC16

FC64

FC16

FC32

-- ++

V
d;t
sdV
d;t
sd E

d;t
sdE
d;t
sd E

d;t+10
sdE
d;t+10
sd

^Proj(V
d;t+10
sd )^Proj(V
d;t+10
sd )
 

Proj(V
d;t
sd )Proj(V
d;t
sd ) Proj(E

d;t
sd )Proj(E
d;t
sd ) Proj(E

d;t+10
sd )Proj(E
d;t+10
sd )

Fig. 9. Extended Supply-demand Block

projection as ˆProj(V d,t+10
sd ) and we have that,

ˆProj(V d,t+10
sd ) = Proj(V d,t

sd )− Proj(Ed,t
sd ) + Proj(Ed,t+10

sd ).

Finally, we concatenate Proj(V d,t
sd ), Proj(Ed,t

sd ),
Proj(Ed,t+10

sd ), ˆProj(V d,t+10
sd ), with a Concatenate Layer

and pass it through two Fully-Connected layers FC64 and
FC32. We use the output of FC32 as the output of the extended
supply-demand block. See Fig. 9 for an illustration.

We explain the reason that we estimate V d,t+10
sd in such

way. The vector Proj(V d,t
sd )−Proj(Ed,t

sd ) indicates how the real-
time supply-demand of [t− L, t) deviates from its empirical
estimation. We thus estimate Proj(V d,t+10

sd ) by adding such de-
viation to the projection of empirical estimation Proj(Ed,t+10

sd ).
Moreover, the projection operation on one hand reduce the
dimension of each supply-demand vector from 2L to 16. On
the other hand, we find that using the projection operation in
our experiment makes our model more stable.

B. Last Call Block and Waiting Time Block

In this section, we present two additional blocks, called the
last call block and the waiting time block. Note that the order
data contains multiple attributes. However, when calculating
the supply-demand vector, we did not consider the attribute
o.pid. Thus, the supply-demand vector V d,t

sd does not contain
any “passenger information”. From V d,t

sd , we can not answer
the questions such as “how many unique passengers did not
get the rides in the last 5 minutes” or “how many passengers
waited for more than 3 minutes” etc. However, we find that
the passenger information is also very important to supply-
demand gap prediction. For example, if many passengers failed
on calling the rides or waited for a long time, it reflects that
the current demand exceeds the supply significantly which can
lead to a large supply-demand gap in the next few minutes. We
use the last call block and the waiting time block to provide
the passenger information. Both of these two blocks have the
same structure as the extended supply-demand block. In another
word, we just replace the real-time supply-demand vector V d,t

sd
in the extended supply-demand vector with the real-time last
call vector and real-time waiting time vector.

For the last call block, we define the last call vector as
follow.

Definition 6 (Real-time last call vector): For a specific
area a at timeslot t in the d-th day, we first pick out the last

call orders in [t− L, t) for all passengers, (i.e. for a specific
passenger pid, we only keep the last order sent by pid), and
denote the order set as SL

d,t. Then, the real-time last call
vector V d,t

lc is defined as a 2L-dimensional vector. We denote
the first L dimension as VA

d,t
lc . For the `-th dimension of VA

d,t
lc ,

we have that

VA
d,t
lc (`) = |{pid | ∃o ∈ SL

d,t s.t. o is valid ∧ o.pid = pid

∧ o.ts = t− `}|

VAlc(`)
d,t describes the amount of passengers whose last call

is at t− ` and she/he successfully got the ride. Similarly, we
define VB

d,t
lc which corresponds to the passengers who did not

get the rides.

We explain the reason that we define the real-time last call
vector. In our data, we find that if a passenger failed on calling
a ride, she/he has a large probability to sent the car-hailing
request again in the next few minutes. Especially, the last calls
near timeslot t are highly relevant to the supply-demand gap
in [t, t+ 10).

Based on V d,t
lc , we can further obtain the empirical last call

vector Ed,t
lc with the same way as we obtain Ed,t

sd . We thus
construct the extended real-time last call block with the same
structure as the extended supply-demand block.

For the waiting time block, we define the real-time waiting
time vector V d,t

wt ∈ R2L in the same way as we defining V d,t
sd

and V d,t
lc .

Definition 7 (Real-time waiting time vector): For a specif-
ic area a at timeslot t in the d-th day, we define the real-time
waiting time vector as V d,t

wt . The `-th dimension in the first part
VA

d,t
wt (first L dimensions) is the total amount of passengers

who waited for ` minutes (from her/his first call in [t−L, t) to
the last call) and did get the rides at last. Similarly, we define
the second part VB

d,t
wt which corresponds to the wait time of

passengers who did not get the ride.

We thus construct the extended waiting time block with the
same structure of the extended supply-demand block.

Finally, we connect the supply-demand block, the last call
block and the waiting time block through residual learning, as
shown in Fig. 7. These three blocks together form the extended
order part in the advanced model. We use the extended order
part to replace the original order part and we thus obtain the
advanced version of DeepSD.

C. Extendability

Finally, in this section we present the extendability of our
model. In real applications, it is very common to incorporate
new extra attributes or data sources into the previous model. For
example, imagine that we have already trained a model based
on the order data and the weather data. Now we obtained the
traffic data and we want to incorporate such data to enhance the
prediction accuracy. Typically, we have to discard the already
trained parameters and re-train the model from beginning.
However, our model makes a good use of the already trained
parameters. In our model, such scenario corresponds to that we
have trained a model with the order block and the weather block.
To incorporate the traffic data, we construct the traffic block and
connect the traffic block with previous blocks through residual
learning, as we show in Fig. 3. Instead of re-training the model



from the scratch, we use the already trained parameters as the
initialized parameters and keep optimizing the parameters of the
new model through backpropagation. We refer to such strategy
fine-tuning. In the experiment (Section VI), we show that the
fine-tuning accelerates the convergence rate significantly and
makes our model highly extendable.

VI. EXPERIMENT

In this section, we report our experimental results on an real
dataset from Didi. We first describe the details of our dataset
in Section VI-A and the experimental setting in Section VI-B.
Then, we compare our models with several other most popular
machine learning algorithms in Section VI-C. In Section VI-D
to Section VI-F, we show the effects of different components in
our model. The advanced DeepSD can automatically extract the
weights to combine the features of different days of a week. We
present some interesting properties of the weights in Section
VI-G. Finally, we show some results about the extendability
of our model in Section VI-H.

A. Data Description

In our experiment, we use the public dataset released by
Didi in the Di-tech supply-demand prediction competition4.

The order dataset contains the car-hailing orders from Didi
over more than 7 weeks of 58 square areas in Hangzhou,
China. Each area is about 3km× 3km large. The order dataset
consists of 11, 467, 117 orders. The gaps in our dataset is
approximately power-law distributed. The largest gap is as
large as 1434. On the other hand, around 48% of test items are
supply-demand balanced, i.e., gap = 0. Auxiliary information
include weather conditions (weather type, temperature, PM 2.5)
and traffic conditions (total amount of road segments under
different congestion levels in each area).

The training data is from 23th Feb to 17th March (24 days in
total). To construct the training set, for each area in each training
day, we generate one training item every 5 minutes from 0:20
to 24:00. Thus, we have 58(areas)× 24(days)× 283(items) =
393, 936 training items in total. Due to the restriction of test
data, we set the window size L = 20.

The test data is from 18th March to 14th April (28 days
in total). During the test days, the first time slot is 7:30 and
the last time slot is 23:30. We select one time slot t every 2
hours from the first time slot unit the last time slot, i.e., t =
7:30, 9:30, 11:30, ..., 23:30. For each time slot t, we generate
one test item. We use T to denote the set of test items.

1) Error Metrics: We evaluate the predicted results using
the mean absolute error (MAE) and the root mean squared
error (RMSE). Formally, we use predd,ta to denote the predicted
value of gapd,ta . Then, the mean absolute error and the root
mean squared error can be computed as follows:

MAE =
1

|T |
∑

(a,d,t)∈T

∣∣∣gapd,ta − predd,ta

∣∣∣
RMSE =

√√√√ 1

|T |
∑

(a,d,t)∈T

(
gapd,ta − predd,ta

)2
.

4http://research.xiaojukeji.com/competition/main.action?competitionId=
DiTech2016&&locale=en

TABLE I. EMBEDDING SETTING

Embedding Layers Setting Occurred Parts

Embedding of
AreaID

R58 → R8 Identity Part, Extended Order Part

Embedding of
TimeID

R1440 → R6 Identity Part

Embedding of
WeekID

R7 → R3 Identity Part, Extended Order Part

Embedding of
wc.type

R10 → R3 Environment Part

B. Model Details

We describe the model setting in this section.

1) Embedding: Recall that we map all the categorical values
to a low-dimensional vectors via embedding (in Section IV-A
and Section IV-C). The detailed settings of different embedding
layers are shown in Table I.

2) Activation Function: For all Fully-Connected layers,
we use leaky rectified linear function (LReL) [23] as the
corresponding activation function. An LReL function is defined
as:

LReL(x) = max{0.001 · x, x}.

For the final output neuron, we simply use the linear activation.

3) Optimization Method: We apply the Adaptive Moment
Estimation (Adam) method [24] to train our model. Adam is
a robust mini-batch gradient descent algorithm. We fix the
batch size to be 64. To prevent overfitting, we further apply
the dropout method [25] with probability 0.5 after each block
(except the identity block).

4) Platform: Our model is trained on a GPU server with one
GeForce 1080 GPU (8GB DDR5) and 24 CPU cores (2.1GHz)
in Centos 6.5 platform. We implement our model with Theano
0.8.2, a widely used Deep Learning Python library [26].

C. Performance Comparison

We train both the basic model and advanced model for
50 epochs. We evaluate the model after each epoch. To make
our model more robust, our final model is the average of the
models in the best 10 epochs.

To illustrate the effectiveness of our model, we further com-
pare our model with several existing methods. The parameters
of all the models are fine-tuned through the grid search.

• Empirical Average: For a specific t in area a, we simply
use the empirical average gap 1

|Dtrain|
∑

d∈Dtrain
gapd,ta

as the prediction for the supply-demand gap in time interval
[t, t+ 10).
• LASSO [10]: The Lasso is a linear model that estimates

sparse coefficients. It usually produces better prediction
result than simple linear regression. Since LASSO can
not handle the categorical variables, we transform each
categorical variable to the one-hot representation. We use the
LASSO implementation from the scikit-learn library [27].
• Gradient Boosting Decision Tree: Gradient Boosting

Decision Tree (GBDT) is a powerful ensemble method
which is widely used in data mining applications. In
our experiment, we use a fine-tuned and efficient GBDT
implementation XGBoost [28].



TABLE II. PERFORMANCE COMPARISON

Model
Error Metrics

MAE RMSE

Average 14.58 52.94

LASSO 3.82 16.29

GBDT 3.72 15.88

RF 3.92 17.18

Basic DeepSD 3.56 15.57

Advanced DeepSD 3.30 13.99

• Random Forest: Random Forest (RF) is another widely
used ensemble method which offers comparable perfor-
mance with GBDT. We use the RF implementation from
the scikit-learn library [27].

For fair comparisons, we use the same input features for
the above methods (except empirical average) as those used in
DeepSD, including:

- AreaID, TimeID, WeekID

- Real-time supply-demand vector V d,t
sd ; Historical

supply-demand vector of different days of week
H

(Mon),d,t
sd , . . . ,H

(Sun),d,t
sd .

- Real-time last call vector V d,t
lc ; Historical last call vector

of different days of week H
(Mon),d,t
lc , . . . ,H

(Sun),d,t
lc .

- Real-time waiting time vector V d,t
wt ; Historical wait time

vector of different days of week H
(Mon),d,t
wt , . . . ,H

(Sun),d,t
wt .

- Weather conditions; Traffic conditions.

Table II shows the comparison results. From Table II, we
can see that the empirical average gap is much larger than the
other methods. By carefully tuning the parameters, LASSO
provides a much better prediction result than the empirical
average. GBDT achieves the best prediction accuracy among all
existing methods, for both MAE and RMSE. The overall error
of the RF is somewhat worse than that of LASSO. Our models
significantly outperform all existing methods. Basic DeepSD
only uses the real-time order data, yet already outperforms the
other methods even when they use more input features. The
advanced DeepSD achieves the best prediction results for both
MAE and RMSE, which demonstrates its prediction power. The
RMSE of the advanced DeepSD is 11.9% lower than the best
existing method.

In Fig. 10, we further enumerate a threshold and compare
the models under different threshold. For a specific threshold,
we evaluate the models on a subset of test data which has
the gaps smaller than the threshold. Basic DeepSD shows a
comparable result with GBDT for RMSE. However, for MAE,
Basic DeepSD is significantly better than GBDT. For all the
thresholds, Advanced DeepSD gives out the best result for both
evaluations.

Fig. 11 shows the prediction curves of the advanced model
and that of GBDT (which performs the best among all other
methods). The figure shows that GBDT is more likely to
overestimate or underestimate the supply-demand gap under
rapid variations. See the curves in the circles in the figure. Our
model provide a relatively more accurate prediction result even
under very rapid variations.
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Fig. 10. Accuracy under different thresholds

TABLE III. EFFECTS OF EMBEDDING

Representation
Basic DeepSD Advanced DeepSD

MAE RMSE
Time

(per epoch)
MAE RMSE

Time
(per epoch)

One-hot 3.65 16.12 26.4s 3.42 14.52 49.8s
Embedding 3.56 15.57 22.8s 3.30 13.99 34.8s

TABLE IV. DISTANCE OF EMBEDDED AREAS

```````̀AreaID
AreaID

3 4 19 24

3 0.00 82.37 10.16 115.99

4 82.37 0.00 75.77 26.67

19 10.16 75.77 0.00 133.98

24 115.99 26.67 133.98 0.00

D. Effects of Embedding

Our model uses the embedding representation instead of
one-hot representation for the categorical values. To show the
effectiveness of embedding, we list in Table III the errors
of different models with both embedding representation and
one-hot representation respectively. The experimental results
show that utilizing the embedding methods improves both the
time-cost and the accuracy.

Moreover, recall that in Section IV-A, we claim that the
embedding technique can cluster the data with similar supply-
demand patterns to enhance the prediction accuracy. To verify
this, we consider the embedded vectors of different areas. We
compare the supply-demand curves of different areas. We find
that if two area IDs are close in the embedding space, their
supply-demand patterns are very similar. As an example, we
show the pairwise Euclidean distances among four different
areas in the embedding space in Table IV. We can see that in
the embedding space, Area 3 is very close to Area 19 and Area
4 is very close to Area 24. We plot the car-hailing demand
curves in 1st March in these areas, as shown in Fig. 12(a) and
Fig. 12(b). From the figure we can see that for the areas which
are close in the embedding space, their demand curves are very
similar. Meanwhile, for the areas which are far apart from each
other, the corresponding demand curves are very different.

More importantly, in the experiment, we find that our model
is able to discover the supply-demand similarity under different
scales. In another word, our model discovers the similarity of
supply-demand “trends” regardless of the scales. For example,
Fig. 12(c) shows the demand curves of Area 4 and Area 46.
The demands in these two areas are in different scales and the
demand curves do not even overlap. However, the distance of
these two areas obtained by our model in the embedding space
is only 13.34. Actually, if we plot two demand curves under
the same scale (as shown in Fig. 12(d)), we can see that the
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Fig. 12. Effects of Embedding. (a) and (b): Areas that have similar patterns are also closer in Euclidean distance in the embedding space. (c) and (d): Areas 46
and 4 have similar demand pattern, but at different scales.
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Fig. 13. Effects of the Environment Part

curves are very similar, i.e., they have similar supply-demand
trends.

E. Effects of Environment Part

In our model, we incorporate the environment data (e.g.,
weather, traffic) to further improve the prediction accuracy.
To show the effectiveness of supplementary part, we compare
the performances of the models under different cases. In Case
A, we only use the order part/extended order part. In Case
B, we further incorporate the weather block. In Case C, we
use all the blocks as we presented in our paper. Fig. 13
shows the prediction accuracies under different cases. Clearly,
incorporating the environment data further reduce the prediction
error for both the basic and advanced versions of DeepSD.

F. Effects of Residual

We adopt the residual learning technique to connect different
blocks. To show the effects of residual learning, we eliminate all
the shortcut/direct connections and simply concatenate all the

Identity Block Traffic BlockWeather Block
Supply-demand 

Block

Concatenate Layer

FC32

Single NeuronSingle Neuron

Fig. 14. The network structure of Basic DeepSD without Residual Learning

TABLE V. EFFECTS OF RESIDUAL LEARNING

Model
With

Residual Learning
Without

Residual Learning
MAE RMSE MAE RMSE

Basic DeepSD 3.56 15.57 3.63 16.40
Advanced DeepSD 3.30 13.99 3.46 15.06

blocks by a Concatenate Layer. We show the structure of basic
DeepSD without residual learning in Fig 14. The advanced
DeepSD without residual learning can be constructed in the
same way. The experimental results are shown in Table V. We
find that the residual learning improves the prediction accuracy
effectively. In contrast, simply concatenating different blocks
leads to a larger error.

G. Combining Weights of Different Weekdays

Our DeepSD model learns the relative importance for
different days of a week, and use a weight vector to combine
the features for different days. Specifically, from the current
AreaID and WeekID, we obtain a 7-dimensional vector p,
which indicates the weights of different days of week (See
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Equ.(1)). We visualize the weight vectors in two different
areas at different days of week, as shown in Fig. 15. The blue
bars correspond to the weight vector at Tuesday, and the red
bars correspond to the weight vector at Sunday. As we can
see, the weight vector on the Tuesday is extremely different
from that on the Sunday. If the current day is Sunday, the
weight is only concentrated on the weekends. This also explains
the effectiveness of distinguishing the data in weekdays and
weekends which is used in prior work [1]–[3], [22]. However,
even for the same day of week, the weights in different areas
can be different. For example in Fig. 15(a), the weight of
Tuesday is significantly higher than the other days whereas in
Fig. 15(b) the weight of all the days are relatively uniform.

H. Extendability

As we claimed in Section I, our model is highly extendable.
When introducing new attributes, we can utilize the previous
trained model instead of re-training from the beginning. For
example, we first train an advanced DeepSD model without the
weather block and the traffic block. Now, as the weather data
and the traffic data become available, we want to incorporate
them to improve the prediction accuracy. For our model, we
only need to add the weather block and the traffic block on
top of the previous (trained) model and keep fine-refining the
parameters. Fig 16 shows the training curves of re-training and
fine-tuning respectively. The experimental result shows that
refining the parameters when incorporating new extra attributes
effectively accelerates the convergence rate.

VII. RELATED WORK

A. Prediction with Spatio-temporal Data

There is a large body of literature on learning and prediction
with spatio-temporal data and we only mention a few closely
related ones.

1) Taxi Route Recommendation: The taxi route recommen-
dation aims to predict the best routes for drivers in order
to maximize their utilization. Yuan et al. [1] presented an
algorithm to suggest the taxi drivers with locations towards
which he/she is most likely to pick up a passenger soon. They
used a Poisson model to predict the probability of picking up
a passenger for each parking place. In their work, the pick-up
locations are fixed in advance. Our work aims to predict the
supply-demand gap in every area. Wang et al. [29] investigated
the problem of recommending a cluster of roads to the taxi
drivers. They used a single hidden layer neural network with
carefully selected hand-crafted features. Our work uses a deep
neural network with little hand-crafted features. Ge et al. [30]
provided a cost-efficient route recommendation algorithm which
can recommend a sequence of pick-up locations. They learnt
the knowledge from the historical data of the most successful
drivers to improve the taxi driver utilization of remaining ones.
However, such problem setting is much different from ours.

2) Taxi Demand Prediction: The taxi demand prediction
studies the problem of forecasting the demands in every pick
up location. Moreira-Matias et al. [5] combined the Poisson
Model and AutoRegressive Moving Average (ARMA) model
to predict the demand in each taxi stand. Again, they only
considered the demands in several fixed locations. Moreover,
in their work they treated the data in each taxi stand separately.
As we mentioned in Section I, such implementation suffers
from the lack of training data. In a recent work, Chiang et al.
[3] proposed a generative model, called Grid-based Gaussian
Mixture Model, for modeling spatio-temporal taxi bookings.
Their approach was able to predict the demand of taxis in any
time interval for each area in the city. Nevertheless, on one hand,
they treated the orders in weekdays and weekends separately.
On the other hand, in their approach, the total amount of taxi
bookings was decided by a Poisson model in advance. When
the real-time taxi demand changed rapidly, their approach may
lead to a large prediction error.

We stress that prior work only studied the demand prediction
but ignored the supply. In the real applications such as taxi
route recommendation, taxi dispatching etc, it is important to
predict the equilibrium of the supply-demand. Moreover, none
of these work studied incorporating the environment data such
as the weather or traffic conditions to enhance the prediction
accuracy.

B. Deep Learning

Recently, an increasing number of researchers studied
applying the deep learning technique to prediction problems
[31]–[34]. However, few work studied the prediction with
spatio-temporal data using deep learning. Lv et al. [35] studied
predicting the traffic flow with deep neural networks. They
adopted a stack autoencoder to train the network layer by layer
greedily. They showed that the deep model is more accurate
comparing with the baseline methods. Zhang et al. [36] designed
a novel architecture called DeepST to predict the crowd flow.
Their model learnt the spatio-temporal patterns by a sequence
of convolutional neural networks. To the best of our knowledge,
applying the deep learning technique to enhance car-hailing
supply-demand prediction accuracy has not been studied so
far.



VIII. CONCLUSION

In this paper, we study the problem of predicting the real-
time car-hailing supply-demand. We propose an end-to-end
framework called Deep Supply-Demand (DeepSD), based on
a novel deep neural network structure. Our approach automat-
ically discovers the complicated supply-demand patterns in
historical order, weather and traffic data, with minimal amount
of hand-crafted features. We conduct extensive experiments on
a real-word dataset from Didi. The experimental results show
that our model outperforms the existing methods significantly.
Furthermore, our model is highly flexible and extendible. We
can easily incorporate new data sources or attributes into
our model without re-training. We are currently working on
incorporating our prediction model into the scheduling system
of Didi.
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