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ABSTRACT
With the wide use of mobile devices, predicting the destina-
tion of moving vehicles has become an increasingly impor-
tant problem for location based recommendation systems and
destination-based advertising. Most existing approaches are
based on various Markov chain models, in which the histori-
cal trajectories are used to train the model and the top-k most
probable destinations are returned. We identify certain limi-
tations of the previous approaches. Instead, we propose a new
data-driven framework, called DESTPRE, which is not based
on a probabilistic model, but directly operates on the trajecto-
ries and makes the prediction. We make use of only historic
trajectories, without individual identity information. Our de-
sign of DESTPRE, although simple, is a result of several use-
ful observations from the real trajectory data. DESTPRE in-
volves an index based on Bucket PR Quadtree and Minwise
hashing, for efficiently retrieving similar trajectories, and a
clustering on destinations for predictions. By incorporating
some additional ideas, we show that the prediction accuracy
can be further improved. We have conducted extensive exper-
iments on real Beijing Taxi dataset. The experimental results
demonstrate the effectiveness of DESTPRE.
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Author Keywords
Destination prediction; Quadtree; Minhash; Historical
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INTRODUCTION
A rapid growing number of mobile devices users across the
world has been witnessed. Modern mobile devices, such as
smart phones or navigation systems, usually have build-in
GPS receivers that can locate the users with high accuracy.
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Figure 1. Destination Prediction Example. A vehicle’s passed trip is in
solid lines. Possible future routes (inferred from historical trajectories)
are in dotted lines. One of these marked places may be the use’s desti-
nation.

Such devices have produced a huge amount of location data,
which can be utilized in a variety of location-based services
(LBS) such as route finding, shopping or restaurant recom-
mendation and location based social networks.

As the usage of LBS becomes part of many people’s daily life,
there has been an increasing demand for an accurate method
of predicting a driver’s destination as a trip progresses. Sev-
eral applications such as location-based advertising can ben-
efit from such a destination prediction method. For example,
when a user is taking a taxi, we can collect the location in-
formation from her/his mobile phone or taxi’s GPS device.
Then, LBS provider predicts the most possible destinations
and sends her/him advertisements about restaurants or hotels
located in the neighborhood of the destinations, or to recom-
mend sightseeing places [19]. Destination prediction can also
potentially help developing route recommendation, naviga-
tion system and crowd anomalies detection. For example, a
driver may want to know about traffic condition and make
the right decision. The congested route can be avoided if the
driver knows what most people’s destinations are. In a navi-
gation system, a prediction of a person’s destination can help
decide if the person is deviating from an intended route [10].
As a potential application, by predicting where many people
go, the administrator may be able to predict the explosion of
the size of the crowd in some places, and take correspond-
ing preventive actions. Figure 1 illustrates an example of the
destination prediction problem. Destination prediction is to
predict the destination of a trip given a partial passed trajec-
tory.
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Existing Approaches
Due to the importance of the destination predication prob-
lem in the aforementioned applications, it has been studied
extensively, and several methods have been proposed. We
briefly review some of them here. Most existing approaches
are based on various Markov chain (or hidden Markov chain)
models [19, 7, 14, 1, 12]. One typical approach is to par-
tition the region uniformly into the grid cells, or roads into
segments, and use the cells or segments as the states of the
Markov process [19, 1, 12]. The historical trajectories are
used to train the transition probabilities of the Markov chain1.
The Markov chain approaches are arguably natural, and have
been empirically shown to be reasonably effective for the des-
tination prediction problem. Adopting the (1st order) Markov
chain model implies that the following implicit assumption is
made: A vehicle travels in a memory-less random walk fash-
ion. However, this obviously contradicts our intuition that a
real trajectory is not totally random. To rectify this, Ashbrook
et al. [19] proposed to use a modified probabilistic model,
where they only retain those random walks that are not much
longer than the shortest path. This clever trick clearly better
captures a trajectory than a pure random walk. However, as
we observed, the modified model still deviates from real tra-
jectories. Figure 2(b) shows the heat map of the modified ran-
dom walk trajectories using the transition probabilities com-
puted as in [19]. The black cells are the start and destination
cells. The darker the color is, the higher probability a trip
contains the cell. Figure 2(a) shows the heat map of the real
trajectories from the same start and destination cells. We can
see clearly that they do not even look similar. Hence, we can
conclude that the modified model [19] does not capture the
real trajectories well.

Several previous work [10, 19, 22, 21, 1] used probabilistic
inference to compute and return the top-k probabilities. When
predicting the destination of an ongoing trip, the conditional
probabilities of arriving at certain places are computed and
the ones with the highest probabilities (i.e., the top-k most
probable places) are returned as the prediction result. This
method does not take destinations’ geographic locations into
consideration. It is quite likely that the probability for each
place to be the destination is small and close to each other.
The returned top-k places may be geographically very close
to each other, but some other the places not so close with
similar probabilities are ignored.

EXAMPLE 1. Consider the example in Figure 1. There are
5 probable destinations denoted by position marks. The prob-
abilities are respectively p1 : 0.22, p2 : 0.21, p3 : 0.20, p4 :
0.19, p5 : 0.18. P1, P2 and P3 are graphically close to each
other, and P4 and P5 are graphically close to each other. If
we were asked to return the top-2 places, (P1,P4) would be
a better answer than (P1,P2) (astute readers may have al-
ready realized that the prediction result can benefit from such
geographic diversity).

1 In the Markov chain model (e.g., [12, 19, 1]), only the most recent
state is useful because of the Markov property (i.e., the past states
and future states are independent conditioning on the current state).
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Figure 2. (a) is the heatmap of real life trajectories. (b) is the heatmap
of the modified random walk model with the same start and end point.

We stress that all information we use for the prediction in
the paper is the historical trajectories and the partial trajec-
tory of the present query. Some previous work [10, 4, 20]
incorporated other informations such like ground cover, road
conditions, and the identities. In particular, having identity
information for private vehicles can be very useful for pre-
diction since they tend to visit a few locations (home, office,
school, etc.) very frequently, which can be identified easily
from historical information of the same person. However, in
this work, we investigate the predictive capability of trajecto-
ries, without using the identity information 2 So, the method
in the paper is more suitable for taxi rides, or other applica-
tions where the identity information is not available.

Our Contributions
In this paper, we propose a new data-driven non-probabilistic
approach to the destination predication problem. Our contri-
butions and the organization of the paper are summarized as
follows.

1. We first explain our design rationale and some observations
that motivate our approach.

2. Then, we propose an indexing method based on BPR
Quadtree and Minhash index, which can be used to retrieve
similar trajectories efficiently and speed up the query time.
We also define a new similarity measure more suitable for
our problem, based on the Longest Common Subsequence
similarity, to measure the similarity of (partial) trajectories.

3. We develop two destination prediction algorithms. The
first algorithm makes predictions by only considering the
frequency of the destinations of similar trajectories. The
other algorithm performs a clustering on destinations of the
similar trajectories in different diameter groups and makes
the prediction based on the resulting clusters. We also pro-
vide an extension algorithm which can further enhance the
accuracy of the prediction.

4. We conduct extensive experiments using real taxi trajectory
dataset to evaluate the effectiveness and efficiency of our
framework. The results show that our method performs
more accurately and efficiently than previous methods.

OTHER RELATED WORK
Destination prediction problem can be classified into two cat-
egories, individual oriented and general oriented. Individ-
ual oriented offers personalized destination prediction while
2 In our Beijing Taxi data, the passengers’ identities are not avail-
able.
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Figure 3. Illustration of Observation 1. (a) shows the distribution of the destination locations with a specific prefix. (b) shows another one with a similar
prefix. (c) shows that of all the prefixes similar to the first one. (d), (e), (f) show another instance. The size of each point indicates its frequency.

general oriented considers a query trajectory from an un-
known. Several previous work on the destination predi-
cation problem made use of individual’s identities. They
trained the model by an individual’s historical trajectories and
predicted the destination for the same individual. Markov
Chain model(including HMM) has been widely applied in
individual-based destination prediction and route planning[1,
2, 13, 16, 11]. [17] proposed a method that uses similarity
measure to identify the historical trajectory and predict the
travel time. [5] used a pattern tree built from the historical
movement patterns. [10] and [8] used Bayesian model which
utilizes the travel time, travel efficiency and land category to
inference the destination.

Several other work, including ours, do not assume the knowl-
edge of the identity of the driver. However, many of them
employed external information to enhance the prediction ac-
curacy and even discarded the geographic information. Se-
mantic information (e.g. restaurant, home etc.) was used
in [4, 20] for mining the trajectory and predicting the des-
tinations. The above studies mainly benefit from a specific
setting of external information. However, our work assumes
only the knowledge of historical trajectory information. We
note that [19] made use the same information as we did and
their approach was explained in the introduction.

DESIGN RATIONALE AND MOTIVATING OBSERVATIONS
Before we get into the details of DESTPRE, we first make
some useful observations that motivate our approach. We
hope these observations can provide useful insight in further
study of the destination prediction problem and related prob-
lems.

As we mentioned in the introduction, we take a non-
probabilistic approach. Nevertheless, we think that the real
trajectories can still be captured by, or approximated by, a
certain probabilistic process (which we refer to as the un-
derlying probabilistic process/model). If the underlying pro-
cess 3 (its structure and parameters) can be well learnt, the
prediction problem would be a simple inference problem on
this model. However, the underlying model may depend on
many (hidden or explicit) parameters, 4 and is too complex
to be described in full details. To improve over the exist-
ing approaches, one obvious thought would be to use a big-
ger model to better approximate the underlying probabilis-
3 All previous Markov models can be thought as the approximations
of this process.
4 Our work concentrates on using only the trajectory information.
There are other potentially relevant parameters (e.g., time, season,
special events.) for the prediction problem.

tic model. For example, one such proposal would be to use
a higher-order Markov model, or to create a huge graphical
model incorporating many more seemingly relevant parame-
ters. But one can easily imagine that learning such a model is
very challenging and expensive. Also it may require a huge
amount of training data to fit the model. Therefore, instead
of creating a better probabilistic approximation of the model,
our approach is entirely data-driven (there is no probabilistic
model). There are only a few hyper-parameters to choose.
In the experimental section, we show how the results vary
with different hyper-parameters and provide some guidance
for choosing them. The rationale of our approach is based on
the following two observations.

Observation 1. If the prefixes of the trajectories are similar,
the distributions of the geographic locations of their destina-
tions also tend to be similar.

Suppose we have observed the prefix pref(T ) of a trajec-
tory T . The underlying probabilistic model induces a con-
ditional distribution Pr[dest(T ) | pref(T ) ] where dest(T ) is
the location of the destination of T . So, to put Observation
1 in another word, if pref(T1) is similar to pref(T2) (we will
formally define the similarity metric later), two distributions
Pr[dest(T1) | pref(T1) ] and Pr[dest(T2) | pref(T2) ] are similar
to each other.

See Figure 3 for an example extracted from the real dataset
(the details of the dataset can be found in the experimental
evaluation). We chose two similar prefixes. Figure 3(a) and
3(b) show respectively the distributions of the destinations of
all trajectories with the two prefixes. We can see that they do
look very similar. Figure 3(c) shows the destination distribu-
tion of the all trajectories with similar prefixes to the first one.
The distribution again look very similar to the first two, ex-
cept that it is denser. Figure 3(d), 3(e), and 3(f) show another
instance.

Observation 2 The destinations of trajectories with similar
prefixes and diameters are clustered.

While Observation 1 is certainly a very useful observation,
we also observed that such distributions (i.e., Pr[dest(T ) |
pref(T ) ]) often tend to be very scattered (see e.g., Fig-
ure 4(a)), which makes the prediction problem hard. Now,
Observation 2 comes to rescue by saying that if we further re-
strict to the trajectories with similar diameters 5, the resulting
distribution (i.e., Pr[dest(T ) | pref(T ),dia(T ) ≈ ` ]) is likely
5The diameter of a trajectory is the great circle distance between the
start point and the destination point.
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Figure 4. Illustration of Observation 2. (a) shows the destinations of
similar prefixes. (b) and (c) show the destinations of similar trajectories
in two different diameters groups.

to be clustered (see e.g., Figure 4(b) and Figure 4(c)). Intu-
itively, clustered distributions are much easier, as the cluster
centers are naturally good predictors. Therefore, we can use
the diameter of the ongoing trip to divide the historical trajec-
tories in different groups.

When a vehicle is moving, its current trajectory can be ob-
tained. If we can find the historical trajectories that are sim-
ilar to the current trajectory, it is helpful to determine the re-
maining trip and the destination. Thus, destination prediction
problem can be reduced to finding the trajectories that are
similar to the given cell trajectory and extracting the reason-
able destinations from them.

AN OVERVIEW OF DESTPRE
Now, we provide an overview of DESTPRE (see Figure 5).
We first build the index at the offline stage. Then, DESTPRE
can answer the query (a partial trajectory) from the client.
More specifically, when a vehicle is moving, its GPS device
sends the partial trajectory to the server, requesting for the
predicted destinations. For the server, it needs to build the
index at the offline stage and process the online query at the
online stage. For the offline stage, first, we construct a BPR
Quadtree and a uniform grid to split the map into cells. Then,
we construct the index which is a collection of Minhash in-
dices so as to find the possible similar trajectories quickly.
For the online part, the client sends a partial trajectory to
the server. When the server receives the partial trajectory,
it searches the candidate trajectories from the index and fil-
ters out the similar trajectories using our similarity metric. At
last, the server classifies the similar trajectories into different
groups according to their diameters, and cluster the destina-
tions of the similar trajectories by their geographic locations.
The centers of all the clusters are returned as the predicted
destinations to the client.

Figure 5. Framework Overview

Figure 6. An example of the Minhash index.

PRELIMINARIES
We first provide some preliminary knowledge.

Bucket PR Quadtree
One important ingredient of DESTPRE is Bucket Point-
Region Quadtree. See e.g., [15] for a detailed exposition of
BPR Quadtree. BPR Quadtree is a variation of PR Quadtree,
which is formed by recursively splitting the underlying space
into four equal area blocks when the number of data points in
each block reaches the bucket capacity τ . Each node of the
BPR Quadtree corresponds to a block in the space. When the
number of data points in a block reaches the bucket capac-
ity τ , the leaf corresponding to the block becomes an internal
node. All the points in it are rearranged into four children
nodes.

BPR Quadtree can adapt to various densities of different re-
gions. Higher density regions have finer cell subdivisions
while rougher subdivisions are sufficient for lower density re-
gions. This feature is particularly useful for our destination
prediction purpose. More concretely, we can have a higher
resolution for high density regions since there are more his-
torical information about those regions and thus we can fur-
ther refine them. In fact, we use a somewhat lower resolution
for low density regions for two reasons: (1) there are fewer
supporting historical data points, (2) the computation cost can
be reduced significantly while the average accuracy is not af-
fected much.

Minhash (Minwise hashing) Index
Minhash (or Minwise hashing)[3] is a class of Locality-
sensitive hashing (LSH), which is used to quickly identify
similar sets. Given a set S ⊆ Ω, where Ω = {1,2, ...,D}, the
Minhash family applies a random permutation π : Ω → Ω

on S and stores only the smallest value after the permuta-
tion mapping. Formally, a Minhash function is defined as:
hπ(S) = mins∈S{π(s)} , where π is a random permutation.
For two subsets A and B of Ω, the probability of collision is
the Jaccard similarity [3] Prπ(hπ(A) = hπ(B)) =

|A∩B|
|A∪B| .

To quickly find similar sets from large data, we preprocess the
sets by building an index. Specifically, we apply the Minhash
function to the LSH preprocessing in [6]. The constructed in-
dex is called the Minhash index. It uses h different Minhash
functions, where h is a fixed integer parameter. Each set S is
represented by the h hash codes generated by the h Minhash
functions, i.e., hπ1(S), . . . ,hπh(S). For each Minhash func-
tion hπi , we create a table Hi composed of D buckets, each
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corresponding to a hash code. In fact, each table Hi is im-
plemented by a hash table. For set S, we store the pointer
of S in the bucket hπi(S) of Hi, for each i ∈ [h]. We now
describe the way to find the sets similar to a query set Q as
follows. We compute the h hash codes hπ1(Q), . . . ,hπh(Q).
For all i ∈ [h], the sets placed in bucket vi = hπi(Q) of Hi are
retrieved. These sets are candidates, and we compute their
actual similarity with Q and return the true top ones.

EXAMPLE 2. An example of constructing the Minhash in-
dex is shown in Figure 6. Specifically, given a set S1 =
{101,423,739,823} ⊆ Ω = {1,2, ...,1000} and two Min-
hash functions h1(X) = minx∈X π1(x) and h2 = minx∈X π2(x),
where π1 and π2 are two random permutations of Ω. After
applying π1, the elements of S1 become {333,894,247,543}.
Therefore, h1(S1) = min{333,894,247,543} = 247. Simi-
larly, h2(S1) = 368. Bucket 247 of hash table H1 and Bucket
368 of hash table H2 hold the pointer of S1. For a set
Q = {101,365,739,823}, h1(Q) = 247, h2(Q) = 301. Then
S1,S4 on Bucket 247 in H1 and S2,S5 in Bucket 301 of H2 are
returned as the candidate sets. The Jaccard similarity of S1
and S2 is 0.75.

TRAJECTORY REPRESENTATIONS AND SIMILARITY

Map and Trajectory Representations
The whole map is divided into two-dimensional cells accord-
ing to the destination density. In other words, we utilize des-
tination points of the historical trajectories to construct the
BPR Quadtree and form the cells by inserting the destination
points into the BPR Quadtree. Each leaf in the BPR Quadtree
corresponds to a cell in the map. According to the property of
the BPR Quadtree, if a certain region is a popular destination,
the BPR Quadtree can provide a finer partition, which allows
the algorithm to make more accurate estimation around the
area. In fact, we do not want all the cells to be very small,
which may lead to large trajectory representation, longer run-
ning time and larger memory usage. Thus, when constructing
the BPR Quadtree, if the size of a cell is too small (≤ 100m),
we do not split it.

We use C to denote the set of cells in the BPR Quadtree
(called quadtree cells) and G to denote the set of cells in
the uniform grid (called grid cells). We use the center of a
(quadtree or grid) cell to represent all GPS points in the cell.

DEFINITION 1 (ORIGINAL TRAJECTORY). An original
trajectory Tv = (p1, · · · , pn) of a vehicle is a sequence of GPS
points collected from one trip. Each point pi consists of its
latitude, longitude and a timestamp as (pi.lat, pi.lon, pi.t) .

DEFINITION 2 (QUADTREE CELL TRAJECTORY).
Given C and an original trajectory Tv, a quadtree cell
trajectory Tc is a sequence of quadtree cells by mapping GPS
points of Tv into quadtree cells in C . Tc = (c1,c2, · · · ,cm)
where each ci ∈ C and c j , c j+1, ∀ j ∈ [m−1].

We can also divide the map in uniform grid cells and use them
to represent the trajectories. The uniform cell representation
admits a rigorous analysis for the Minhash index (see Theo-
rem 1).

Figure 7. Maximum matching of two trajectories. The squares with
dashed line is one trajectory, while triangles with solid line is another.
The matching threshold is ε . Maxm = 3 in the example.

DEFINITION 3 (UNIFORM CELL TRAJECTORY).
Given G and an original trajectory Tv, a uniform cell
trajectory Tu is a sequence of cells by mapping GPS points
of Tv into grid cells in G . Tm = (g1,g2, · · ·gm) where each
gi ∈ G and g j , g j+1, ∀ j ∈ [m−1].

The cell length of a cell trajectory Tc = (c1,c2, · · · ,cm) is the
number of cells in it, i.e. the cell length clen(Tc) of Tc is m.
The diameter of a cell trajectory is defined as the distance be-
tween the first cell and last cell. Let T be the set of historical
cell trajectories. T is partitioned by their starting cells. We
denote the set of trajectories starting from cell c by Tc.

Trajectory similarity
Now we provide the similarity measurement that we use in
this paper.

DEFINITION 4 (INCREASING MATCHING). Let
dist(a,b) be the great-circle distance (distance for short)
6 between two points a and b. Let ε be a positive con-
stant, called the matching threshold. For two points pa
and pb, if dist(pa, pb) < ε , then the pair (pa, pb) can be
matched together. Giving two sequences A = (a1,a2, · · · ,am)
and B = (b1,b2, · · · ,bn), we say a sequence with k pairs
{(ai1 ,b j1),(ai2 ,b j2), · · · ,(aik ,b jk)} is an increasing match-
ing, if i1 < i2 < · · · < ik , j1 < j2 < · · · < jk and each
(aid ,b jd )(1≤ d ≤ k) is a matching pair.

An increasing matching M with the maximum length is called
a maximum matching. The max-matching number is denoted
by Maxm. See Figure 7 for an example.

We use the standard dynamic programming to compute the
maximum matching between two trajectories (the dynamic
programming is similar to the one for the longest common
subsequence problem[18]). Now, we briefly explain the dy-
namic programming. Each cell in a cell trajectory can either
be matched with a cell in another trajectory or remains un-
matched. Let A = (a1,a2, · · · ,an) and B = (b1,b2, · · · ,bm) be
the given two cell trajectories. Note that when measuring the
distance between the two cells, we use the center points of
the two cells. Given ε as the matching threshold, we define
the cardinality of the maximum matching between A and B
as Maxmε(A,B). The dynamic programming recursion for
computing the maximum matching of two cell trajectories is

Maxmε(A,B)=


0 if A or B is empty;
1+Maxmε((a2, . . . ,an),(b2, . . . ,bm)),

if dist(a1,b1)≤ ε;

max
{

Maxmε(A,(b2, . . . ,bm)));
Maxmε((a2, . . . ,an),B);

otherwise.

6This is the shortest distance between two points on the surface of a
sphere, measured along the surface of the sphere.

733

SESSION: UBICOMP IN TRANSPORTATION



For our prediction purpose, we propose a new similarity
measure between the partial cell trajectory and the histori-
cal cell trajectory, Alternative Longest Common Subsequence
(ALCSS), as follows.

DEFINITION 5 (ALCSS DISSIMILARITY). Given two
cell trajectories Ta, Tb and the matching threshold ε , the
ALCSS dissimilarity from Ta to Tb is defined as

dsimε(Ta,Tb) = 1− Maxmε(Ta,Tb)

clen(Ta)
(1)

We note that ALCSS is a modified version of the Longest
Common Subsequence similarity used in some previous work
[17, 18]. One important difference is that dsim is asym-
metric in a sense that dsimε(Ta,Tb) may not be the same as
dsimε(Tb,Ta). The reason is that we want the dsimε(Ta,Tb)
to be small even if Ta only matches well with a prefix of Tb.

DEFINITION 6 (SIMILAR TRAJECTORY). A cell trajec-
tory Ta is similar to another cell trajectory Tb with the
matching threshold ε and the similarity threshold θ , if
dsimε(Ta,Tb)≤ θ .

INDEX CONSTRUCTION AND RETRIEVAL
In this section, we investigate how to construct the index
based on the Minhash index and retrieve similar trajectories.
Index Construction
Our index is a collection of Minhash indices. Each cell c in
the map (a leaf in BPR Quadtree) contains a Minhash index
to store the historical trajectories whose first cell is c. By
regarding each trajectory as a set, finding similar trajectories
corresponds to finding similar sets using Minhash index. For
each cell c in the map, a Minhash index which uses h different
hash functions is constructed using the method shown in the
preliminary. When doing insertion, a set ST is constructed
according to the cell trajectory T . Then, for each i ∈ [h], we
place the pointer of T into the bucket labeled hπi(ST ) in hash
table Hi.

As to insert the cell trajectory into Minhash index, we first
show how to construct a set ST ⊆Ω called corresponding set
(for the Minhash index) of a cell trajectory T . Then, we pro-
vide the algorithms for constructing the index.

Note that we should consider not only the cells in the cell
trajectory, but also the ones that can potentially match them.
Consider the quadtree trajectory Tc = (c1,c2, · · · ,cm). For
each quadtree cell ci in Tc, consider the disk Di whose cen-
ter is the center of ci and radius is ε(usually ε is smaller than
the side length of the grid cell). Let Gi be those grid cells
that intersect Di. Note that Gi covers all quadtree cells that
can potentially match ci. The whole cell trajectory is trans-
formed into the set S = G1 ∪G2 ∪ ·· · ∪Gm. An example of
constructing the corresponding set for a trajectory is shown
in Figure 8. Given a partial quadtree cell trajectory, the cen-
ters of the quadtree cells are a,b,c. They are mapped into
points a′,b′,c′. Then the corresponding set of this partial tra-
jectory is the set of grid cells in the upper layer. Now, we
illustrate the construction of the index. We build a Minhash
index Ic for each leaf c ∈ C . Ic is used to index the histor-
ical cell trajectories in Tc (those starting from quadtree cell

Figure 8. Illustration of constructing the corresponding set for a
quadtree cell trajectory. The squares in the lower layer are the quadtree
cells while the squares in the upper layer are grid cells (elements in the
Minhash index).

c). All the historical cell trajectories are inserted in the index
while traversing the BPR Quadtree.

Candidate Trajectory Retrieval
A candidate trajectory is a historical trajectory that may be
similar to the partial trajectory. Now, we show how to retrieve
candidate trajectories using the index.

Now we illustrate the details of the retrieval process. Given
a partial trajectory, we only consider the Minhash indices for
some cells near the starting location of the partial trajectory.
We enlarge the starting location of the first cell s to a region
Region(s,r) which contains cells that intersect with the disc
centered at the first cell with the radius r. We can pre-compute
a neighboring cell list Lc for each cell c, (here by saying nc
is a neighbor of c, we mean that dist(c,nc) ≤ r). Therefore,
when we want to get the cells in Region(s,r), we only need
to get the list Ls. For a partial cell trajectory Tq, we search
the Minhash indices in the cells in Region(s,r). Note that the
methods of set construction for a partial cell trajectory and
historical cell trajectories are different.

Next, we give a theorem to explain why we can use Minhash
to index the similar trajectories. Theorem 1 and Corollary 1
demonstrate the relationship between the similar trajectories
and the trajectories retrieved from the Minhash index. If a
trajectory is similar to a partial trajectory, it can be retrieved
from the index with a high probability.

THEOREM 1. Suppose the cell trajectories are presented
by uniform grid cells in G , and the similarity threshold is θ .
Given two cell trajectories Q and T , where T is a similar
trajectory of Q, when we query the similar trajectories of Q
in a Minhash index, the probability that T can be retrieved
from one hash table is at least 1−θ

θ+3α
, where α = clen(T )+2

clen(Q) ,
clen(T ) is the number of cells in T .

PROOF. Given a cell trajectory A = (a1,a2, · · · ,am), ai ∈
G , i ∈ [m], the grid cell set SA of A is a set of grid cells
in A, defined as SA = {a1,a2, ...,am}. Then the grid cell
sets of T and Q are ST and SQ. Recall that the dissimi-
larity for a partial trajectory Q and a trajectory T is defined as
dsim(Q,T ) = 1− Maxm(Q,T )

clen(Q) . dsim(Q,T )≤ θ implies that

Maxm(Q,T ) = (1−dsim(Q,T ))×clen(Q)

≥ (1−θ)×clen(Q).

T has been transformed into a set ST for Minhash index. Re-
call that ST is the union of all the elements in ST and the 8
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neighboring cells of each element. Thus, |ST | ≤ 3|ST |+ 6
(this is because there are |ST | elements in ST and at most
2|ST |+ 6 neighboring cells. Hence, ST contains at most
3|ST |+6 cells). Then, given query Q, the probability of find-
ing the similar trajectory using in one hash table is

Pr(hπ(SQ) = hπ(ST )) =
|SQ∩ST |
|SQ∪ST |

=
|SQ∩ST |

|SQ|+ |ST |− |SQ∩ST |

Note that clen(T ) = |ST |. Suppose Maxm(Q,T ) = m, we
can see that |SQ∩ST |= m and

|SQ|+ |ST |− |SQ∩ST | ≤ clen(Q)+3clen(T )+6−m.

Hence, we have that

Pr(hπ(SQ) = hπ(ST ))≥
(1−θ)×clen(Q)

θ ×clen(Q)+3clen(T )+6

=
1−θ

θ +(3clen(T )+6)/clen(Q)

=
1−θ

θ +3α

COROLLARY 1. The probability that a similar trajectory
can be retrieved from the index is at least 1− (1− 1−θ

θ+3α
)h,

where h is the number of hash functions.

PREDICTION ALGORITHMS
In this section, we present two destination prediction algo-
rithms to predict destinations of using similar trajectories
based on the index.

Destination Frequency based Algorithm
Before we introduce our prediction algorithm in DESTPRE
, we first propose a destination frequency based algorithm
FREQ as a comparison. Suppose the set of the destinations
of the similar trajectories is D . We calculate the frequency of
each destination d ∈ D . It is intuitive to predict destination
by taking advantage of the frequency of the destinations. The
predicted result is the most frequent destinations of D .

First, in this algorithm FREQ, we retrieve the candidate tra-
jectory set. Secondly, we use ALCSS as a filter to get the real
similar trajectories from the possible ones. Then we get the
destinations of the similar trajectories and calculate the fre-
quency of each destination by maintaining a priority queue.
Finally, the algorithm returns the top-k frequent destinations
using the priority queue. If there is no similar trajectory in
the index, we just return the current cell as the destination.

Diameter Cluster based Algorithm
In reality, similar trajectories have different diameters (Ob-
servation 2). This inspires us to propose the CLUSTER algo-
rithm. It classifies the similar trajectories into different groups
according to their diameters, and the destinations of similar
trajectories are clustered by their geographic locations. The
centers of all the clusters are returned as the predicted desti-
nations.

Algorithm 1 The CLUSTER algorithm.
Input: The partial cell trajectory, Tq = q1,q2, · · · ,qm; the

matching threshold ε; the similar threshold θ ; the diam-
eter group number σ ; the returned number k;

Output: The predicted destination set, Sd ;
1: Initialize σ lists, say Li, i = 0, · · · ,σ −1;
2: Find candidate trajectory set C T ;
3: for each Th ∈ C T do
4: if dsimε(Tq,Th)≤ θ then
5: Compute the diameter of Tq and Th as dia(Tq) and

dia(Th);
6: Add the destination of Th to Li, i = b dia(Tq)·σ

dia(Th)
c;

7: end if
8: end for
9: for each Li do

10: Cluster the destinations in Li and return the centers of
each cluster;

11: Add the centers and qm to Sd ;
12: end for
13: return Sd ;

We classify the similar trajectories by using the ratio between
the diameter of the partial trajectory and the diameter of the
similar trajectory to divide similar trajectories into different
diameter groups, i.e., (0-50%,50-100%,100%). 100% is used
for the case that the car has moved into the destination cell,
but the trip has not finished. According to the diameter of
the partial and the historical trajectories, similar trajectories
could be classified into different diameter groups. The num-
ber of diameter groups is denoted by σ . In this paper, we set
σ = 2. According to Observation 2, we know that the geo-
graphic distribution of the destinations of the similar trajecto-
ries in different diameter groups tends to be clustered. There-
fore, instead of choosing the most frequent ones, we choose
the cluster centers. Here we use the k-means algorithm for
clustering. The number of centers kc is determined by k (the
returned number) and σ . Thus, the centers of the clusters for
each diameter group and the current cell (for group 100%) are
returned as the predicted destinations.

Algorithm 1 illustrates the details of the CLUSTER algorithm.
Given a partial cell trajectory Tq, step 2 retrieves the candi-
date trajectory set C T of Tq. In step 4, we compute the
similarity of Tq and each Th in C T using ALCSS. If Th is
a similar trajectory, suppose the diameter of the Tq and Th are
dia(Tq) and dia(Th), and the ratio between their diameters is
dia(Tq)/dia(Th). Thus, Th is added to the group with index
b dia(Tq)·σ

dia(Th)
c in step 6. In step 9 to 13, we cluster the destina-

tions of similar trajectories in each diameter group, and return
the centers of each cluster and the current cell as the predicted
destinations.

Further Improvement for k = 1
In this section, we consider the case in which we are required
to return only k = 1 destination. We show that we can fur-
ther improve the performance for the k = 1 case, by making
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Figure 9. Figure on left shows the cells in which CLUSTER works better.
Those appear to be the main roads of the city. Figure on right shows the
cells that Naïve works better. Most of them are local small roads.

another useful observation. The new algorithm is denoted as
CLUSTER (k = 1).

If the trip is nearly completed (the current place is very close
to the destination), CLUSTER does not perform very well
which can seen from Figure 10(a) in the experiment section.
An interesting (yet somewhat trivial) observation is that the
Naïve algorithm (predicting the last cell of the current tra-
jectory) would be a very compelling algorithm in such case.
However, we do not know what is the proportion of the trip
that has been completed.

So, we proceed as follows. We evaluate the performance of
CLUSTER and Naïve on the partial trajectories whose last
GPS point located in each cell c. The algorithm performes
better(above half of the test) on cell c is recorded. Then,
given a partial cell trajectory with last location in cell c, if
CLUSTER performes well, the Cluster algorithm is used. Oth-
erwise, c is predicted as the destination. The intuition behind
the CLUSTER (k = 1) algorithm can be seen from Figure 9.
The cells for which CLUSTER performs better on are usually
on the main road. On the other hand, if the last cells are not
parts of the main road, it is more likely that the trip is to be
completed soon, and predicting the current cell as the desti-
nation usually performs better.

EXPERIMENTAL EVALUATION
Experimental Setup
Dataset. In all experiments, we use the real dataset which
consists of GPS points of 12000 taxis collected from Octo-
ber 1st to December 31st in 2012 and distributed in the ur-
ban area about 50km× 50km in Beijing, China. 7 Since
the dataset is about 90GB which is very large and the GPS
points for different vehicles are mixed, we apply a MapRe-
duce based secondary sorting algorithm to the feature “Car
Id” and “Time Stamp” to generate sequences of GPS points
for different taxis. Attribute “State” indicates whether the taxi
is occupied or not. Therefore, we can use “State” to split the
data into trajectories. A switch from the state “0 (unoccu-
pied)” to “1 (occupied)” indicates that the taxi begins a new
trip, and a reverse switch indicates the termination of a trip.
We further clean the data by discarding the trips that are too
short. The average length of the trajectories is about 11km.

After extracting the trajectory from the data, we randomly
pick 1,000 trajectories from this dataset as the test set. The re-
maining ones are used to create an index storing about 11 mil-
lion cell trajectories (which is of size approximately 1.97GB).
7 http://www.datatang.com/data/45888

The algorithms are implemented in Java and run on a PC with
Intel Core i5 CPU(3.2GHZ) and 16GB memory on Windows
7 platform. The number of hash tables for Minhash index is
set to be 6. The grid granularity of G is set to be 100 (i.e., G
contains 100× 100 cells). The real geographic distance be-
tween two grid cells is about 500m. The number of cells in
C (the cells in the quadtree representation) is about 10000.
Also, the smallest cell size is about 100m. The hyperparam-
eters used in the evaluation are the matching threshold ε , the
similarity threshold θ and the radius of the starting region r.

Accuracy Evaluation
We compare the accuracy achieved by different prediction al-
gorithms using our framework DESTPRE, the baseline algo-
rithm, and the prior works.

We list the algorithms we compare against as follows:

• Naïve is the method that we predict the last cell of the par-
tial trajectory as the destination. This shows the average
remaining length of real trajectories.
• RF (Random Forests): It is one of the most popular of-the-

shelf prediction algorithm. In our experiment, we use the
following features: the start location, the travel time and
the average driving speed of a current trip.
• SUBSYN[19]: This algorithm utilizes the same informa-

tion of the data as ours. We implement SUBSYN with the
grid granularity 100 which is the same with our setting.
Because of the usage of large memory, it is run on another
computer with 128GB memory.
• CLUSTER is the diameter cluster based algorithm, and

FREQ is the destination frequency based algorithm. They
are the prediction algorithms proposed in our paper. CLUS-
TER (k = 1) is an extension prediction algorithm as further
improvement for k = 1.

Performance metric: To evaluate the effectiveness of our
method, we use Average Minimum Error (AvgMinErr) and
Distance-accuracy Value (DAV) as our performance metrics.
AvgMinErr is a measure to estimate the prediction error and
the diversity performance of the algorithms. Suppose our test
set Q has n queries. We define Average Minimum Error for
all queries is the average of all errors over all n queries, i.e.,
AvgMinErr = 1

n ∑
n
i=1 MinErr(qi), qi ∈ Q, where MinErr(qi)

is the error of a single query q. Let the error of a single
query q be the minimum L1 distance between any predicted
destination cell dpi (i ∈ [k]) and the true destination cell dr,
which is MinErr(q) = mini∈[k] L1(dpi ,dr). For example, the
L1 distances between the three predicted destinations and
the true destination are 3km, 4.5km and 1km respectively,
then MinErr(q) = 1km. It is likely that the true destination
is among these three predicted destinations. We argue that
AvgMinErr is an appropriate metric for our prediction task
(especially when k > 1): 8 Consider a prediction result A with

8 The metric has been widely used in several prediction problems
in a variety of areas such as information retrieval, ad allocation (the
allocation is good if the user clicks any ad), machine learning and
computer vision (in image classification, such as the ImageNet com-
petition, the result is correct if one (out of 3 or 5) classification re-
sult is correct). Using more sophisticated metrics (such as variants
of DCG [9]) is left as an interesting future work.
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Figure 10. Average minimum error. (a),(b),(c) show the Average minimum error of different number of predicted destinations k = 1,3,5 (ε = 500m,
θ = 0.15, r = 500m). δ is the percentage of the trip completed so far.
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Figure 11. Average minimum error for different hyperparameters (k = 5). (a),(b),(c) show the accuracy performance with various settings of the
matching threshold ε , the similarity threshold θ and the radius of a start region r.

one very accurate point and others with fair accuracy, and an-
other result B in which all predicted points are mediocre but
the mean error is better. Arguably, A is more useful than B, es-
pecially for advertising/recommendation related applications.
Furthermore, if we want to minimize the mean error, the opti-
mal solution would be to return the same most frequent point
k times (mean error does not reward diversity). So it does not
make sense to consider the mean error for k > 1 (when k = 1,
AvgMinErr is the same as the mean error though). In fact, we
also did some experiments with the mean error metric. The
results were not very informative (only suggested that higher
k value is not useful for this metric). Due to the space limita-
tion, we choose to omit those results here.

While AvgMinErr is a single average number to measure the
prediction performance, DAV can provide more comprehen-
sive distributional information. Formally, given a threshold
λ , DAV(λ ) = |Qλ |

|Q| where Qλ = {q ∈ Q,MinErr(q) ≤ λ}.
In other words, DAV(λ ) is the percentage of queries for
which the error is no more than λ . For instance, suppose
DAV(1km) = 40%. So if 1km is an acceptable error, then the
algorithm makes correct predictions on 40% of the queries.

We define δ to be the percentage of the trip completed so
far (the ratio between the length of current trip and the com-
plete trip). k is defined as the number of predicted desti-
nations. We evaluate AvgMinErr and DAV by varying δ =
30%,50%,70%,90% and k = 1,3,5 for different algorithms.

Average Minimum Error
Figure 10 shows how AvgMinErr of different algorithms vary
with δ and k (we return k locations). Here the matching
threshold ε and the radius of the starting region r are set to
be 500m. The similarity threshold θ is 0.15. We can see
significant improvement of AvgMinErr with the growth of θ .
With k = 1, which means MinErr for a query is exactly the L1
distance between the real destination and the predicted desti-
nation, the CLUSTER (k = 1) algorithm performs better than
the others. With k = 3,5, we observe that our proposed algo-
rithms FREQ, CLUSTER achieve better accuracy than SUB-
SYN, RF. Among all those algorithms, CLUSTER provides
the best accuracy. For example, with k = 5 and δ = 30%,
AvgMinErr of SUBSYN is about 5.8km, while that of CLUS-
TER is about 3km which is 52% better than the former one.
All the figures in Figure 10 report that the performance gap
is more significant when δ is smaller and CLUSTER always
outperforms FREQ. This indicates the effectiveness of the
clustering step in our framework.

Now we evaluate AvgMinErr of the CLUSTER algorithm un-
der different hyperparameter settings with k = 5. The eval-
uated hyperparameters are ε , θ and r. The experimental
results and the hyperparameter settings are shown in Fig-
ure 11. In Figure 11(a), it can be seen that ε = 500m is a
better choice according to the small AvgMinErr in general.
When ε = 300m, the matching threshold is smaller than that
of ε = 500m, so that it returns trajectories with less similar-
ity and leads to a worse result. For the case ε = 700m, the
matching threshold is large, which may consider irrelevant
trajectories as similar ones. As Figure 11(b) shows, with the
increase of θ from 0.1 to 0.2, AvgMinErr of θ = 0.2 is larger
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(d) δ = 90%

Figure 12. Distance-accuracy curve of k = 3 predicted destinations (ε = 500m, θ = 0.15, r = 500m).

than that of the others. With larger θ , we get trajectories less
similar to the query. The difference of AvgMinErr between
θ = 0.1 and θ = 0.15 is not significant. In general, when
δ > 30%, θ = 0.15 is slightly better than θ = 0.1. r controls
the number of cells in the starting region. As shown in Fig-
ure 11(c), AvgMinErr first decreases and then increases with r
from 300m to 700m when δ is 30%. The reason is that when
r = 300m, less historical trajectories are considered, since the
cell number is small. However, when r = 700m, the starting
region is too coarse. Therefore, we choose r = 500m.

Distance-accuracy Value
Note that larger DAV denotes better performance. As shown
in Figure 12, DAV of CLUSTER or FREQ under each δ is
larger than that of the Naïve, SUBSYN, RF algorithms. This
implies that no matter how much δ is, with a specific thresh-
old λ , the accurate rate of our proposed algorithms is larger
than the others. CLUSTER algorithm leads ahead to the
other algorithms. For example, with k = 3 and δ = 30%,
DAV(2km)≈ 20% for Naïve, DAV(2km)≈ 15% for SUBSYN
and RF, while DAV(2km) ≈ 40% for CLUSTER. Also, with
k = 5 and δ = 50%, DAV(1km)≈ 30% for CLUSTER.

Efficiency Evaluation
Index Efficiency. We test the time efficiency of CLUSTER.
The measurement is the average running time per query. We
evaluate the pruning capability of the index. Figure 14 shows
the running time of CLUSTER and the algorithm without us-
ing the Minhash index (called “No-index”) with r = 500m,
θ = 0.15, ε = 500m. As shown in Figure 14, when δ = 50%,
the running time of CLUSTER is about 1.3s while that of No-
index is about 2.3s, which is nearly twice of the former one.
This is because CLUSTER can prune most of the historical
trajectories that are not possible to be the similar trajectories.

Running time for different ε . Figure 13(a) shows the running
time of CLUSTER varying with ε under the condition that θ =
0.15, r = 500m. The average running time of ε = 300m and
ε = 500m are close, while that of ε = 700m is far more than
the others. This is because for ε = 300m and ε = 500m, we
choose the same grid granularity 100. While for ε = 700m,
we set the grid granularity to 50. Smaller grid granularity
leads to longer running time. The running time in fact does
not directly depend on ε , but the grid granularity.

Running time for different r. When retrieving the similar tra-
jectories, we consider the scale of the starting region. Un-
der the condition that ε = 500m, θ = 0.15, the efficiency
of CLUSTER algorithm varying with different r is shown in
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Figure 13. Average running time for different hyperparameters. (a) and
(b) show the average running times with various ε and r values.
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Figure 14. Index Efficiency (r = 500m, θ = 0.15, ε = 500m).

Figure 13(b). We get more similar trajectories with larger r,
which causes longer running time.

CONCLUSDING REMARKS
In this paper, we propose DESTPRE, a data-driven method
for predicting the destination of a partial trajectory. The de-
sign of DESTPRE is based on several interesting observations
we made from the data. Our method is conceptually simple,
has a high accuracy and can scale to fairly large dataset. Ex-
tensive experiments using real trajectory dataset have demon-
strated that DESTPRE can efficiently predict the destination
with lower error than existing methods.

We note that our method does not utilize other information
like time, weather, and the identity of the driver/passenger.
Hence, our method is more suitable for taxi rides, or when
such information is not available. We believe incorporating
such information can further increase the accuracy of the pre-
diction and we leave it an important future direction. In ad-
dition, our indexing data structure stores all historical trajec-
tories, which may be expensive in memory space usage. We
plan to use compression or sampling techniques to further re-
duce the space usage.
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