
Automatic User Identification Method across
Heterogeneous Mobility Data Sources

1 Institute for Interdisciplinary Information Sciences, Tsinghua University
2Big Data Lab, Baidu Inc

{cao-w13@mails, wang-dong12@mails, lijian83@mail}.tsinghua.edu.cn

{wuzhengwei, wuhaishan}@baidu.com

Abstract—With the ubiquity of location based services and
applications, large volume of mobility data has been generated
routinely, usually from heterogeneous data sources, such as
different GPS-embedded devices, mobile apps or location based
service providers. In this paper, we investigate efficient ways of
identifying users across such heterogeneous data sources. We
present a MapReduce-based framework called Automatic User
Identification (AUI) which is easy to deploy and can scale to very
large data set. Our framework is based on a novel similarity
measure called the signal based similarity (SIG) which measures
the similarity of users’ trajectories gathered from different data
sources, typically with very different sampling rates and noise
patterns. We conduct extensive experimental evaluations, which
show that our framework outperforms the existing methods sig-
nificantly. Our study on one hand provides an effective approach
for the mobility data integration problem on large scale data sets,
i.e., combining the mobility data sets from different sources in
order to enhance the data quality. On the other hand, our study
provides an in-depth investigation for the widely studied human
mobility uniqueness problem under heterogeneous data sources.

I. INTRODUCTION

Ubiquitous location based services and applications have
enabled people to use GPS-embedded devices for navigation,
travel planning and geolocation information sharing in their
daily life. Such mobility data is now collected routinely at a
very large scale. The large volume of mobility data gives rise to
new opportunities for discovering patterns and characteristics of
human mobility behaviors. An increasing number of researches
empowered by mobility data has emerged recently. Meanwhile,
mining of such mobility data also shows great potentials in
various industrial and commercial applications, including traffic
analysis [1]–[3], travel recommendation [4]–[11], location-
based social network [12]–[17], geographical searching [18],
[19] etc.

In real applications, mobility data is usually generated from
heterogeneous data sources, such as different GPS-embedded
devices, mobile apps, or LBS providers etc. In this paper, we
aim to study the efficient approach of identifying users from
mobility datasets collected from heterogeneous sources. We first
present two motivations of our work. On one hand, an effective
user identification algorithm is the fundamental ingredient of
the commonly faced mobility data integration problem [20]–
[22], which aims to improve the quality and density of the data
by fusing multiple mobility data sets collected from different
sources. On the other hand, as the human mobility uniqueness
problem being widely studied recently [23]–[25], our work

*Corresponding author.

provides an in-depth investigation for the uniqueness of human
mobility under heterogeneous data sources.

A closely related topic is user similarity search where the
goal is to retrieve a subset of users with similar spatio-temporal
patterns. Essentially, we can think of the user identification
problem as a special case of user similarity search problem.
For each trajectory, we retrieve the most similar ones from
another data source and identify whether they belong to the
same person.

Despite the fact that the user similarity search has been
studied quite extensively [5], [26]–[29], not much work has
investigated the mobility data collected from heterogeneous data
sources, which is much more complicated. In our experiments,
the data is collected from various mobile apps, including the
navigation data, map queries, geo-tagged records in social
platforms etc (see Section VI for details). To make our
exposition more concrete, we first illustrate some distinct
features of our data and our objective.

• The most distinctive feature we have found about the
trajectories is the sheer variety of the sampling rates
among different sources. For example, trajectories of
GPS navigation data are usually sampled at a very high
rate whereas the geo-tags or map queries are sampled
with an extremely low rate. Even in the same data
source, the utilization frequencies could vary drastically
during different time intervals. On the other hand, most
prior work uses approximately uniformly (and often
densely) sampled data [5], [26], [27], [30].

• For some sparse trajectories, it is almost impossible to
infer any information of user movement. For example,
for the geo-tagged check-in data in our data set,
each user only generated one GPS record every 2.63
days on average. Most of prior work measures the
trajectory similarities based on the movement behaviors
of the users such as the speed, move direction, spatial-
temporal closeness (i.e., two trajectories are similar
only if they appeared in approximately the same
place at approximately the same time) [26], [30]–[34].
However, such features are not available in our data
due to the extreme sparsity.

• The trajecotries of the users with close relationship
usually have a significant overlap. For example, we
investigate the mobility data of several students who
study in University T. Most of their trajectories lie
on their department buildings and dormitories. Such

Wei Cao1,2, Zhengwei Wu2, Dong Wang1, Jian Li1, Haishan Wu2*

978-1-5090-2020-1/16/$31.00 © 2016 IEEE ICDE 2016 Conference978

Restaurant

Home

Hotel

(a) Trajectories of the same person
which are sampled at very different
rates.

City B
City C

City B
City C

City A

(b) Trajectories of the same person
which co-occurred in several places
far apart from each other.

City B
City C

City B
City C

City A

(c) Trajectories of the same person
which are disjoint in several cities.

Teaching
Building

Teaching
BuildinggLaboratory

BuildingBuilding

(d) Trajectories of two school mates
which have significant overlap.

Fig. 1. Four typical cases observed in the real dataset

overlap renders it difficult to distinguish them. However,
few prior work investigates user identification problem
under such case.

• For different data sources, the trajectories can be
temporally disjoint. For example, two data sets of the
same group of anonymized users with inconsisten user
id, one is collected at January and another is collected
at February. Especially, for the businessmen, they may
go to several different cities during several months
which makes it difficult to measure their similarities.

To provide some intuitions for the readers and to illustrate
the challenges, we show an example in Example 1.

Example 1: In Figure 1, we show four typical cases
observed in the real datasets (there are many other cases
or combinations of those cases, that are impossible to list
exhaustively).

Each of (a)(b)(c) represents two trajectories (from different
data sources) that belong to the same person and (d) shows
the trajectories that belong to two schoolmates.

• In (a), the white trajectory is sampled at a much lower
rate than the red trajectory but they both occurred in
several fixed places frequently. Such co-occurrences are
significant for identifying the same person, especially
when they take place far apart from each other, such
as several different cities, as shown in (b).

• However, in (c), we observed from the data that the
trajectories of the same person can be also disjoint
in several cities. Such case often happens when the
trajectories are temporally disjoint as well. However,
as they co-occurred significantly in one city (city A), we
can still identify that they belong to the same person.

• In (d), as the trajectories in the same campus have
significant overlap, it is hard to distinguish the users
from their schoolmates. Nevertheless, the red tra-
jectories occurred more in the laboratory building
while the white trajectory tends to go to the teaching
building more. Such pattern enables us to identify them
uniquely.

The above features make our user identification problem
very different from the previous trajectory similarity problems
[5], [26]–[28], [30], [33]–[36] in that the trajectories we deal
with are sampled at very different rates, and extremely noisy.

To address the challenge, we propose a MapReduce-based
framework, called Automatic User Identification (AUI), which
is based on a novel trajectory similarity measure. AUI is easy
to deploy and can scale to very large data set. We summarize
our technical contributions below:

• We formulate the user identification problem over large
scale heterogeneous mobility datasets and we present
a MapReduce-based frame called AUI.

• We design an effective filtering strategy based on
the MapReduce-based framework. With the filtering
strategy, for each trajectory we only need to compare
it with a small number of candidates. The filtering
strategy is the foundation of that AUI can scale to
very large data sets.

• We design a novel similarity measure called the signal
based similarity (SIG) by considering the frequencies
of the co-occurrences and the locations where they took
place. Since our data is collected from many different
data sources, we do not assume any property of the
mobility data (e.g., sample rate, time span). We show
that compared with the existing measures, our measure
can handle the extremely noisy cases effectively. The
experiment result shows that our measure is more
robust and accurate for our user identification problem
with heterogeneous data sources.

• We adopt a rejection strategy in order to reduce the
mis-identification cases. Many application scenarios
are highly sensitive to misidentification, i.e. a few
erroneous cases could lead to serious consequences.
Our strategy enhances the accuracy of the framework
significantly.

• We evaluate our framework by 6 experiments of
different cases. For the easiest case (31511 users in
China), we achieve an accuracy of 99.94%. For the
hardest case (14115 college students who study in
the same campus), we achieve an accuracy of 90.09%
whereas the best existing method only achieves an
accuracy of 61.38% in this case.

II. FORMULATION AND OVERVIEW

The problem studies the user identification across heteroge-
neous data sources. We first present several useful definitions.

Dormitory

979

Definition 1 (Trajectory): A trajectory T = {p1, p2, . . . ,
p|T |} is a temporally ordered sequence of spatio-temporal points.
Each point pi is associated with three attributes x, y, t where
the pair (x, y) 1 indicates the coordinate of pi and t indicates
the timestamp when pi was recorded.

Here we stress that the trajectories in our data could be
extremely sparse, i.e., there may be less than one spatio-
temporal point per day in average.

Definition 2 (Mobility data set): A mobility data set D is
defined as a collection of trajectories. Each trajectory T ∈ D
is associated with an id T.id.

Definition 3 (Matching trajectory): Suppose two trajecto-
ries TA, TB are collected from different mobility data sets. If
TA and TB are generated from the same user, then we call TB

a matching trajectory of TA.

Our problem is defined as follow. Given two mobility data
sets DA and DB (usually collected from two different data
sources), for each TA ∈ DA, our goal is to identify whether
there exists TB ∈ DB which is the matching trajectory of
TA. Moreover, it is guaranteed that for each TA, there exits
at most one matching trajectory in DB . We do not assume
any other property of the mobility data set. Thus, the sampling
rates of the trajectories could be very high or extremely low.
Furthermore, DA and DB could be temporally disjoint, i.e.,
they are collected at different time intervals.

We explain the reason why we can achieve user identifica-
tion across heterogeneous mobility data sources. Montjoye et
al. [23] showed that the human mobilities are highly unique.
Each individual has her/his own mobility pattern. People tend
to visit the places where they often visited in the past. Even for
the users with very close relationship, they still have noticeable
different mobility patterns as we illustrated in Fig 1(d). Such
uniqueness of human mobility allows us to identify trajectories
that belong to the same user from different sources.

To handle the extremely sparse trajectories (which makes
it hard to infer any mobility pattern from the daily data),
we accumulate the trajectories during a long time interval
(for example, the trajectories during 3 months). Thus, by
accumulating the historical mobility data, it is possible to
infer the mobility pattern of a user such as the places he/she
tends to visit. Fig. 2 shows an example in our data set where
the trajectory is collected from February to May in 2015
with 5 points per day in average. By accumulating all these
points, we can clearly see that this user usually stay at home
and the workplace. Moreover, he/she had visited Wangfujing
and Beijing Botanical Garden one day in the past 3 months.
Motivated by this, we consider both the frequency of spatial co-
occurrences (i.e., two trajectories co-occurred at approximately
the same location) under different granularities and the locations
where they took place. We define our trajectory similarity
mainly based on these factors.

We first present an overview of AUI. Our framework
consists of three stages: the pre-processing stage, the multi-
resolution filtering stage and the verification stage. All of
the stages are implemented on the MapReduce frame. In
the pre-processing stage, we first perform data compression
by transforming each trajectory into consecutive transitions
between a set of stay points, i.e., the locations where the user
stays for a while rather than just passing by. Since for large scale

1We use the mercator coordinate in our experiment.

!(!(

!(!(

!(

!(

!(!(!(

!(

!(

!(!(!(

!(

!(

!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(!(

!(

!(

!(!(

!(!(

!(!(!(

!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(!(

!(!(

!(

!(

!(!(

!(

!(!(

!(!(!(

!(

!(

!(

!(!(

!(

!(!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(!(!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(
!(

!(

!(

!(

!(

!(

!(

!(!(!(

!(
!(

!(!(

!(

!(

!(!(

!(!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(
!(!(

!(

!(!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(!(

!(

!(!(

!(

!(

!(

!(

!(

!(
!(
!(

!(!(!(!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(!(

!(

!(

!(!(!(!(

!(

!(

!(

!(
!(

!(

!(

!(

!(!(

!(

!(

!(

!(!(

!(

!(

!(

!(!(

!(

!(!(!(

!(!(!(

!(

!(

!(!(!(!(

!(!(

!(

!(
!(!(

!(!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(
!(!(

!(

!(!(!(

!(

!(

!(

!(!(!(!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(!(

!(!(

!(

!(

!(

!(!(

!(

!(!(!(!(!(!(

!(

!(!(!(

!(

!(
!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(
!(!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(!(!(

!(

!(

!(!(
!(

!(

!(!(!(!(!(!(!(

!(

!(
!(

!(

!(!(!(

!(

!(

!(

!(

!(!(!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(!(

!(

!(
!(

!(

!(

!(

!(!(!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(!(!(!(

!(!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(!(!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(
!(

!(

!(!(!(

!(!(

!(

!(

!(
!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(!(!(

!(

!(!(!(

!(

!(!(

!(

!(!(

!(

!(!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(!(!(!(!(

!(!(

!(

!(

!(

!(

!(

!(!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(!(
!(

Fig. 2. A trajectory in our data.

data sets, pairwise comparison is rather expensive, in the multi-
resolution filtering stage, we partition the map into multiple
grids with multi-resolution. For each trajectory TA ∈ DA, we
select a small subset of trajectories in DB which co-occurred
frequently in multiple cells with TA as the candidate set of TA.
Finally, as the trajectories we deal with are sampled at very
different rates and extremely noisy, in the verification stage, we
evaluate each candidate with the signal based similarity which
can handle such cases effectively and we carefully select the
matching trajectory. We further extend our similarity measure
and adopt an effective rejection strategy in the verification stage
to reduce the misidentification cases (Section V).

III. PRE-PROCESSING

The pre-processing stage transforms each trajectory into a
set of stay points, i.e., the location points that the user stay
for a while rather than passing by. Thus stay points usually
carry the particular semantic meanings such as the building
they live or the park they went [27]. The pre-processing stage
consists of map-only jobs. For each trajectory T ∈ DA/DB ,
the map function takes T.id as the key and T as the value. We
use a similar method as in [27] to pre-process the trajectories.
For each trajectory in a mobility data set, we split it into
consecutive segments. A segment is defined as a series of
continuous location points sharing the same mobility status,
such as stay, move and pass-by. For example, a user drove
for 2 hours to a shopping mall and spent 3 hours in the mall,
then drove to another place. Such trajectory can be split into 3
segments: driving to the mall, staying at the mall and driving
to another place. For each segment under stay status, we use
the geometric center of the segment as the corresponding stay
point. We then use a series of stay points as the compressed
trajectory. A location point is considered as under stay status if
the user spent more than Δl

t minutes but less than Δu
t minutes

around this point within a distance of Δd meters. Comparing
with [27], we set an additional upper bound Δu

t here (typically
12 hours). The reason is that in some sparse trajectories the time
gap between two consecutive location points can exceed several
days, which renders it difficult to infer the user’s mobility status
during the gap. For such cases, we regard the latter location
point as the start point of a new segment. Furthermore, we
stress that the pre-processing stage mainly effect on the non-
sparse trajectories. For the extremely sparse trajectories, almost

980

Algorithm 1 Pre-Processing

Map: (〈T.id, T 〉)
1: S ← {}, P ← {p1};
2: for i = 2 . . . |T | do
3: pb ← P [1] ;
4: t ← pi.t− pb.t;
5: d ← Dis(pi, pb);
6: if d ≥ Δd or t ≥ Δu

t then
7: if t ≥ Δl

t then
8: sp.loc ← MeanCoordinate(P); � stay point
9: sp.cnt ← |P |; � number of around points

10: S.add(sp); � add the stay point into S
11: end if
12: P ← {pi}; � start a new segment
13: else
14: P.add(pi); � add pi into current segment
15: end if
16: end for
17: emit(〈T.id, S〉))

a single spatio-temporal point can represent a stay point. See
Algorithm 1 for the pseudo-code.

IV. MULTI-RESOLUTION FILTERING

Since the pair-wise comparison is expensive, especially for
the large data sets, in the multi-resolution filtering stage, for
each TA ∈ DA, we only select a small subset from DB as its
candidates. The multi-resolution filtering stage contains two
phases. In the first phase, for each TA ∈ DA, we gather the
“significant” co-occurrences with TA. In the second phase, we
evaluate the gathered co-occurrences and select a small subset
of trajectories as the candidate set of TA.

Formally, in the first phase, we partition the map into N
grids with different granularities, i.e., the side length of cells
in the grid. We use G1, . . . , GN to denote these grids. The
map function takes the trajectory id T.id as the key and the
corresponding stay points S as the value. For each Gi, we
enumerate the stay point sp ∈ S and emit the key-value pairs
〈c, 〈T.id, sp.cnt〉〉, which indicates that T.id occurred in a cell
c for sp.cnt times. Here c represents a tuple 〈cx, cy, sz〉 where
〈cx, cy〉 is the coordinate of the cell in the grid and sz is the
corresponding side length. Note that since different grids are
partitioned into different granularities, the tuple 〈cx, cy, sz〉
indicates a specific cell uniquely. The trajectory ids occurred
in the same cell thus must be shuffled into the same reduce
task.

In the reduce stage, each reduce function takes a key
value pair 〈c, list(〈T.id, T.cnt〉)〉 as input. If the length of
list(〈T.id, T.cnt〉) exceeds mc, we simply drop the cell c. Here
mc is a parameter to be specified (see Section VI for details).
Such cells usually correspond to the “common places” of the
users such as the subway stations, which are not significant for
the identification. Dropping such cells on one hand accelerates
the algorithm. On the other hand, in Section VI, we show that
it enhances the performance of our algorithm. For the rest of
the cells, the reduce function splits list(T.id) into two groups,
the ids from DA and the ids from DB , denoting as list(TA.id)
and list(TB .id). (To ensure the source of trajectory id is
distinguishable, we add different special marks to the trajectory
ids in different data sources.) Each pair (TA.id, TB .id) from
the two lists is a candidate pair. For each candidate pair, we

Algorithm 2 Multi Resolution Filtering

Map: (〈T.id, S〉)
1: for i = 1 . . . N do
2: sz ← the cell size of Gi

3: for sp ∈ S do
4: cx, cy ← the cell coordinate that sp lies in Gi

5: c ← (cx, cy, sz)
6: emit(〈c, 〈T.id, sp.cnt〉〉)
7: end for
8: end for

Reduce: (〈c, list(〈T.id, T.cnt〉)〉)
9: if len(list(〈T.id, T.cnt〉)) ≤ mc then

10: lA ← items of list(〈T.id, T.cnt〉) where T.id ∈ DA

11: lB ← items of list(〈T.id, T.cnt〉) where T.id ∈ DB

12: for 〈TA.id, TA.cnt〉 ∈ lA do
13: for 〈TB .id, TB .cnt〉 ∈ lB do
14: o ← min{TA.cnt, TB .cnt} � co-occurrences
15: output(TA.id, 〈TB .id, c, o〉)
16: end for
17: end for
18: end if

//second phase
Map: (〈TA.id, 〈TB .id, c, o〉〉)
19: emit(〈TA.id, 〈TB .id, c, o〉〉)
Reduce: (〈TA.id, list(〈TB .id, c, o〉)〉)
20: for 〈TB .id, c, o〉 ∈ list(〈TB .id, c, o〉) do
21: sz ← the size of c
22: Increase the ranking score of TB .id by (rsz · o)
23: end for
24: I ← top Q trajectory ids with largest ranking scores
25: for TB .id ∈ I do
26: Merge the items of TB .id into one key-value pair

〈TA.id, 〈TB .id, list(〈c, o〉)〉〉
27: output(〈TA.id, 〈TB .id, list(〈c, o〉)〉〉)
28: end for

emit a key-value pair 〈TA.id, 〈TB .id, c, o〉〉 which indicates that
TA.id and TB .id co-occurred in the cell c for o times. Here the
co-occurred frequency o is obtained by min{TA.cnt, TB .cnt}.

In the second phase, the map function simply emits its input
〈TA.id , 〈TB .id, c, o〉〉. Thus, the key-value pairs with the same
TA.id are shuffled into the same reduce task and each reduce
task takes the key-value pair 〈TA.id, list (〈TB .id, c, o〉)〉 as
the input. We evaluate each TB .id in list (〈TB .id, c, o〉) with a
ranking score. Formally, for each co-occurrence with TB .id in a
cell with side length sz, we increase the ranking score of TB .id
by a parameter rsz . The finer granularity they co-occurred, the
larger ranking score we increase. We select the top Q ids with
the largest ranking scores as the candidate set of TA. For each
candidate TB .id, we merge the related co-occurrences into one
key-value pair 〈TA.id, 〈TB .id, list(〈c, o〉)〉〉. See Algorithm 2
for the pseudo code.

We show a running example in Fig. 3. The grid in Fig. 3
is partitioned into small cells. The side length of each cell is
20 meters. The circle points are the stay points of user idA
and the triangle points are the stay points of user idB . In the
map stage of the first phase, for each cell we emit the users
who occurred in this cell with corresponding frequency. By
shuffling and grouping the keys, in the reduce stage we output

981

Fig. 3. Running example of the multi-processing stage

the co-occurrences of idA. Finally, in the second phase of the
multi-resolution stage, we select the candidates of idA and
merge the related co-occurrences.

V. VERIFICATION STAGE

In the verification stage, we evaluate each candidate of TA

and carefully select the matching trajectory. We first present the
signal based similarity in Section V-A which is the foundation
of the verification. Next, we present the algorithm of verification
in Section V-B.

A. Signal Based Similarity

Intuitively, the signal based similarity takes a pair of trajecto-
ries as input and observes the co-occurrences sequentially. Each
co-occurrence is regarded as a “signal” which indicates that two
trajectories might belong to the same user. The similarity is the
final signal when the whole sequence is processed. The stronger
the final signal is, the more similar the two trajectories are. We
distinguish two kinds of signals, the observed signal and the
stimulus signal. The observed signal is directly calculated by
the co-occurrences in each cell. The strength of the observed
signal increases as the frequency of co-occurrences increases.
However, such co-occurrences may be affected by some “kernel
places”. For example, in Figure 4, the two trajectories co-
occurred frequently at the company, as a result, they are also
frequently observed co-occurring at the nearby bus station.
We refer to the company in this example as a kernel place.
To capture such spatial correlation feature, we introduce the
stimulus signal. We assume that there exist several kernel cells
initially. Each kernel cell emits a positive stimulus signal. Each
stimulus signal spreads out spatially from the kernel cell with
an attenuation factor α < 1. We consider the observed signal
as the superposition of the decaying stimulus signals. The
signal based similarity extracts the kernel cells and recovers
the strengths of the stimulus signals from the observed signals.
The final signal is calculated by considering both the strength
of stimulus signals and the distances between the kernel cells.

Formally, suppose we are given two trajectories TA ∈ DA

and TB ∈ DB . We consider each grid Gi separately. We use
(c1, o1), . . ., (cm, om) to denote the observed co-occurrences
in Gi. Here ck represents the k-th co-occurred cell and ok
represents its corresponding frequency. For simplicity, we do
not require a specific order here. We first calculate the observed
signal in each cell. Note that the frequency of co-occurrences
has the following diminishing marginal utility property: when
many co-occurrences at a specific cell have been observed,
further co-occurrences at the same cell can only contribute

Company Station

Home Shop

Fig. 4. The company and the home represent two kernel places.

limited information. To capture such property, we use a sigmoid
function fs(ok; η, γ) to calculate the observed signal in ck:

ob(ck) = fs(ok) =
η

1 + e−γok
− η

2
(1)

where η, γ are two parameters to be specified (see Section VI
for details).

To recover the stimulus signals efficiently, we simply
process the observed signals sequentially to approximate the
stimulus signals. For the cell ck, we assume that it is only
affected by the cells c1, . . . , ck−1. Note that the stimulus signals
we obtained may be different under different orders of cells.
However, in the experiments, we find a specific order rarely
affects the accuracy for user identification. Specifically, we use
st(ck) to denote the stimulus signal in cell ck. Initially, we
have that st(c1) = ob(c1). For any k > 1, we have

st(ck) = max

{
ob(ck)−

∑
l<k st(cl) · αDisgrid(ck,cl)

0
. (2)

where Disgrid is the distance metric defined on the grid. In our
algorithm, we use Euclidean distance of cell centers scaled by
the side length of the cell as Disgrid. Thus, the kernel cells are
the cells with non zero stimulus signal. We use K to denote
the indices of kernel cells, i.e., K = {k : st(ck) > 0}.

Next, we take the distances between the kernel cells into
consideration. We use md(ck) to denote the minimum distance
from cell ck to the previous kernel cells, i.e.,

md(ck) = min
(l<k)∧(l∈K)

Disgrid(ck, cl).

982

Algorithm 3 Signal Based Similarity for TA and TB

1: for i = 1 . . . N do
2: K ← {}
3: for k = 1 . . .m do
4: o ← co-occurrences in cell ck ∈ C;
5: ob(ck) = fs(o);
6: if k == 1 then
7: st(c1) ← ob(c1)
8: else
9: st(ck) ← max{0, ob(ck) − ∑

l∈K st(cl) ·
αDisgrid(ck,cl)};

10: end if
11: if st(ck) > 0 then
12: K.add(k);
13: end if
14: end for
15: sigi = st(c1) +

∑
k∈K\{1} st(ck) · (1 + fd(md(ck)))

16: end for
17: SIG =

∑N
i=1 βi · sigi;

Algorithm 4 Verification

Map: (〈TA.id, 〈TB .id, list(〈c, o〉)〉〉)
1: calculate the signal based similarity SIG
2: calculate the weighted jaccard similarity WJS
3: if SIG ≥ θSIG and WJS ≥ θWJS then
4: emit(〈TA.id, 〈TB .id, SIG,WJS〉〉)
5: end if

Reduce: (〈TA.id, list(〈TB .id, , SIG,WJS〉)〉
6: if ∃T ∗

B .id ∈ list(TB .id) dominate all the others then
7: output(〈TA.id, T

∗
B .id〉)

8: end if

Similarly, we define a sigmoid function fd(md(ck);λ, μ) which
has the same form as fs with parameters λ and μ to be specified.
Then, the signal in the grid Gi is:

sigi = st(c1) +
∑

k∈K\{1}
st(ck) · (1 + fd(md(ck))) (3)

The equation 3 essentially captures the feature that we
showed in Fig. 1(c), i.e., it is significant to observe the co-
occurrences taking far apart from each other.

Finally, we sum the signals of all the grids. We set a weight
parameter βi for the Gi. Again, the finer granularity Gi is, the
larger weight parameter βi becomes. Thus, the signal based
similarity is defined as:

SIG =
∑
i

βi · sigi (4)

See Algorithm 3 for the pseudo code.

B. Verification

In the verification stage, each map function takes a key-
value pair 〈TA.id, 〈TB .id, list(〈c, o〉)〉〉. Note that list(〈c, o〉)
contains all the co-occurrences in all grids. Thus, we can
directly calculate the signal based similarity from list(〈c, o〉).

To verify the candidates, a feasible way is to measure each
candidate of TA with the signal based similarity and select the

Fig. 5. Example of the weighted Jaccard similarity.

most similar one as the matching trajectory. In the experiment
section, we show that such strategy achieves a reasonable
performance. However, many application scenarios are highly
sensitive to misidentification, i.e. a few erroneous cases could
cause serious consequence. It is necessary to adopt a rejection
strategy, i.e., to refuse to identify the trajectories that may
lead to mistakes. In Section VI, we show that it is difficult
and inaccuracy to obtain a rejection strategy with only the
signal based similarity. Motived by this, we adopt an effective
rejection strategy with another similarity measure called the
weighted Jaccard similarity which is applied in combination
with the signal based similarity. The weighted Jaccard similarity
was first proposed by Ioffe et al. [37]. It measures the similarity
between two weighted set. For our problem, we regard each
trajectory as a set of cells it has visited. The weight of each
cell is the corresponding visiting frequency. Thus, for a given
pair of trajectories, it measures the similarity of the places they
visited and the corresponding frequencies. For a specific grid
Gi , we use vAc (vBc resp.) to denote the frequency of TA (TB

resp.) being observed at cell c. The similarity of TA and TB

on grid Gi is defined as:

wjsi =

∑
c min{vAc , vBc }∑
c max{vAc , vBc } . (5)

We show an example in Fig. 5. The points in the same shape
(circle or triangle) indicate a specific id. We use the red color to
indicate that the user occurred in this cell for 5 times. Similarly,
we use yellow color to represent the frequency of 3 and the
white color to represent the frequency of 1. Thus, the weighted
Jaccard similarity in the left figure is 17/27 = 0.63 and the
weighted Jaccard similarity in the right figure is 17/49 = 0.35.

Note that the term min{vAc , vBc } is exactly the frequency
of co-occurrence of TA and TB in cell c which is already
contained in list(〈c, o〉), all we need to do is calculate the
term max{vAc , vBc }. Re-writing the denominator as

∑
c v

A
c +∑

c v
B
c −∑

min{vAc , vBc }, we find that the first two terms are
exactly the accumulated frequency of all the stay points which
can be obtained easily at the beginning. Thus, the weighted
Jaccard similarity on Gi also can be calculated from list(〈c, o〉).
Similarly, we use WJS =

∑
i βi ·wjsi as the weighted Jaccard

similarity of TA and TB .

We first calculate the signal based similarity and the
weighted Jaccard similarity for all the candidates. Next, we set
two small thresholds θSIG and θWJS to filter out the dissimilar
candidates. If a candidate TB .id has its signal based similarity
smaller than θSIG or its weighted Jaccard similarity smaller than
θWJS, we filter it out from the candidate set. After the filtering, if
there exists a unique maxima in the candidate set, we return it as
the matching trajectory. Otherwise, we reject the identification.
A candidate is called a maxima if there do not exist another
candidate with both of the two similarities greater than it. For

983

example, suppose we have 3 candidates with (SIG,WJS) equal
to (12.7, 0.4), (13.1, 0.3), (10, 0.35) respectively. Then the first
two candidates are both maxima. See Algorithm 4 for the
pseudo code.

We stress that when the mobility data sets are sampled in
very different rates, the weighted Jaccard similarity becomes
very low which leads to a great error. However, in the
experiment section, we show that by combining with the signal
based similarity and setting an extremely small threshold θWJS,
AUI achieves a great performance.

VI. EXPERIMENT EVALUATION

In this section, we conduct extensive experiments on real
mobility data sets to demonstrate the performance of the
proposed algorithm. We first describe our experiment setting in
Section VI-A then we continue by presenting the effects of the
parameters in Section VI-B. We further compare our algorithm
with the existing methods in Section VI-C. Finally, in Section
VI-D we give a discussion of our experimental results.

A. Experiment Setting

Our data set is collected from users who shared location
data using different mobile apps of Baidu Inc. The data sources
include the navigation data, map queries, geo-tagged records
in social platforms etc. During our experiment, all the user id
were anonymized by hashing. The trajectories of the same user
have the consistent hashing id which we use it as the ground
truth.

We distinguish two kinds of data sets, the dense mobility
data set and the sparse mobility data set. The sources of dense
mobility data sets contains the navigation data and the GPS
location data. The sources of sparse mobility data sets contains
map queries, geo-tagged check-in data etc. Thus, the trajectories
in the dense mobility data are sampled at a very high rates
whereas the trajectories in the sparse mobility data are sampled
at a low rates.

We randomly select 31511 users in China and extract the
corresponding mobility data from the dense mobility data set,
denoting as CN-Dense. The time span of CN-Dense is from
August, 2014 to February 2015. Among these users, 6396 users
can be found in the sparse mobility set. We extract the mobility
data of these 6396 users from the sparse mobility set, denoting
as CN-Sparse. For the first experiment, we use CN-Sparse and
CN-Dense as DA and DB respectively as we described in
Section II.

Next, to evaluate our algorithm in the case that the
trajectories are temporally disjoint, we split CN-Dense into two
parts. The first part is from August 2014 to November 2014,
denoting as CN-Part1 and the second part is from December
2014 to February 2015, denoting as CN-Part2. Note that some
trajectories only appeared during one of the time intervals. Thus,
after splitting, the number of trajectories of each data set can
be less than 31511. Furthermore, only part of the trajectories
in DA have the matching trajectories.

We further select 4323 company employees who work in
Company B and 14115 college students who study in University
T. We design another 4 experiments with the same method we
used in our first two experiment settings.

To pre-process the data, we set Δd = 100m and [Δl
t,Δ

u
t] =

[0.5h, 12h] (Algorithm 1). Thus, a location point is considered

as a stay point if the user stays around the point within 100
meters for more than half an hour but less than 12 hours. We
compare the average number of location points each trajectory
contains before and after the pre-processing. The details as
shown in Table I.

We stress that the first two experiments (CN-Sparse vs. CN-
Dense and CN-Part1 vs. CN-Part2) form the easiest two cases,
since these users are randomly chosen from a large population
distributed on a vast spatial domain, which renders it easy to
uniquely identify them even under coarse granularity. The last
two experiments (UT-Sparse vs. UT-Dense and UT-Part1 vs.
UT-Part2), form the hardest two cases since these students
all study and live in the same campus and it is difficult to
distinguish any of them from their schoolmates.

All the algorithms are implemented in Python and ran under
streaming mode of Hadoop system (Release 2.6.0). All the
experiments are conducted on a Hadoop Cluster with 10 nodes.
Each node corresponds to a computer with a Intel Xeon E312
CPU of 2 cores (2.1GHz for each core) and a 8G memory.

B. Effects of Parameters

Before we show the experiment results, we first give two
useful definitions.

Definition 4 (hitting rate): Given a specific trajectory
TA ∈ DA and its candidate set, if the matching trajectory
of TA is contained in its candidate set, we say we “hit” TA.
Suppose there are H trajectories in DA which is hit. Then the
hitting rate of DA is defined as H/|DA|.

Definition 5 (coverage, accuracy): Suppose we use a sin-
gle similarity measure S to identify the users. For each
TA ∈ DA, denote its candidate set as C. If

max
TB .id∈C

S(TA, TB) ≤ θ

where θ is a given threshold, then we refuse to identify TA.
Otherwise, we select the candidate with the largest similarity
as the matching trajectory. Suppose there are Rej trajectories
which we refuse to identify and there are Cor trajectories
which are correctly identified. Then the coverage is defined as
1− Rej

|DA| and the accuracy is defined as Cor
|DA|−Rej .

Note that Definition 5 defines the coverage of a single
similarity measure. For AUI, since it utilizes a pair of similarity
measures and selects the matching trajectory only if it is the
unique maxima. The coverage of AUI is essentially associated
with the “cohesion” of the data sets and can be determined
automatically, i.e., the coverage would be much lower if users
within the data sets are spatially correlated or exhibit a high
degree of social homophily.

Our default parameter setting is presented in Table II. To
illustrate the effects of different parameters, each time we only
change one parameter and keep the others unchanged.

1) Effects of Q: Recall that in the multi-resolution filtering
stage, for each TA ∈ DA, we select a candidate set of size Q
(Algorithm 2). If Q is too small, it is easy to miss the matching
trajectories in their candidate set. However, the results show
that only choosing Q = 20 is enough to achieve the hitting
rates from 91.61% to 99.66%. A higher hitting rate can be
obtained by choosing larger value of Q, which would increase
the time cost of the verification stage at the same time, as
shown in Table III.

984

TABLE I. DESCRIPTION OF THE DATA SETS

Data set Number of trajectories

Average points

per trajectory

before compression

Average points

per trajectory

after compression

Time span

(Year-Month-Day)

CN-Sparse 6396 81.31 20.47 14-08-01 to 15-02-28

CN-Dense 31511 2303.12 196.65 14-08-01 to 15-02-28

CN-Part1 27019 1063.70 92.78 14-08-01 to 14-11-30

CN-Part2 30853 1441.28 117.65 14-12-01 to 15-02-28

CB-Sparse 888 101.11 29.09 15-03-01 to 15-05-31

CB-Dense 4323 1012.71 170.07 15-03-01 to 15-05-31

CB-Part1 3014 512.58 84.02 15-03-01 to 15-04-15

CB-Part2 3770 714.07 120.37 15-04-16 to 15-05-31

UT-Sparse 1992 101.61 27.06 15-03-01 to 15-05-31

UT-Dense 14115 776.04 166.52 15-03-01 to 15-05-31

UT-Part1 9695 374.66 79.53 15-03-01 to 15-04-15

UT-Part2 12497 544.49 116.10 15-04-16 to 15-05-31

TABLE II. DEFAULT PARAMETER SETTING

variable value source

N
2

(with side lengths = {20m, 200m})
Algorithm 2

r20, r200 0.625, 0.375 Algorithm 2

mc 2000 Algorithm 2

Q 20 Algorithm 2

η 16 Equ. (1)

γ 0.2 Equ. (1)

α 0.4 Equ. (2)

λ 50 Equ. (3)

μ 1/4000 Equ. (3)

β1, β2 0.8, 0.2 Equ (3)

TABLE III. HITTING RATE OF EACH EXPERIMENT

Experiment Q = 3 Q = 20 Q = 50

CN-Sparse

vs. CN-Dense
96.17% 97.62% 97.62%

CN-Part1

vs. CN-Part2
98.0% 98.82% 98.74%

CB-Sparse

vs. CB-Dense
90.50% 99.66% 99.66%

CB-Part1

vs. CB-Part2
83.14% 91.61% 93.50%

UT-Sparse

vs. UT-Dense
85.14% 99.10% 99.10%

UT-Part1

vs. UT-Part2
78.01% 91.88% 94.22%

2) Effects of N : In the multi-resolution filtering stage, we
partition the map into N grids with different granularities
(Algorithm 2). To illustrate the effects of N , we use 3
experiments with different parameter settings. In Setting A,
we only have one grid. The side length of each cell is 20m.
In Setting B, we use the default setting as shown in Table
II. In Setting C, we partition the map into 4 grids. The side
lengths equal to 20m, 50m, 100m, 200m respectively and we
set the weight parameters β as {0.6, 0.4, 0.2, 0.1} from the
finest granularity to the coarsest granularity. The results are

shown in Table IV. Each item in Table IV corresponds to a
pair (coverage, accuracy).

From the experimental results, it is easy to see that with
multiple granularities, our algorithm achieves a much better
performance. The reason is that the finer granularity only
captures the significant co-occurrences of two trajectories, such
as the co-occurrences in the same building. However, due to the
noise of the mobility data and the location error of GPS devices,
it is hard to identify the users with such limited information.
As we can see, in Setting A, the algorithm rejects the most
of the identifications for all of the experiments. Especially,
for the experiment CN-Sparse vs. CN-Dense, the coverage is
only 28.92%. However, by utilizing multiple granularities with
proper weight parameters, we successfully identify 92.01% of
the trajectories with the accuracy of 99.74% for the experiment
CN-Sparse vs. CN-Dense in Setting C, which is much better
than the other settings.

3) Effects of mc: As we explained in Section IV, the cells
with a large population usually correspond to some “common
places”. Eliminating such cells (more than mc users being
observed in this cell) on one hand accelerates the algorithm,
on the other hand enhances the performance of the algorithm.

We evaluate the effects of mc on the hardest experiment
UT-Part1 vs. UT-Part2 (the other experiments are not sensitive
to mc since the trajectories are distributed on a vast spatial
domain). We compare the coverage, the corresponding accuracy
and the running time under different values of mc. The results
are shown in Table. V.

From Table V we can see that, the coverage increases with
the increase of mc. If mc is too small (e.g. mc = 50 in our
experiment), the algorithm drops the most of the cells and
only retain the sparsely-populated cells. Of course, observing
the co-occurrences in those sparsely-populated cells is very
significant for user identification. However, the coverage in
such case is extremely low. Furthermore, we find that the
accuracy of each experiment does not vary much when mc

varies. Such property echoes that AUI determines the coverage
automatically according to the cohesion of the data set.

It is notable that the complexity of the reduce stage in the
first phase of the multi-resolution filtering is O(min{mc, |Tc|}2)
where Tc is the trajectories ids occurred in the current cell.

985

TABLE IV. EFFECTS OF N

Experiment
Setting A

(20m)

Setting B

(20m, 200m)

Setting C

(20m, 50m, 100m, 200m)

CN-Sparse vs. CN-Dense (28.92, 100.00) (59.72, 99.94) (92.01, 99.74)

CN-Part1 vs. CN-Part2 (59.46, 99.95) (88.35, 99.80) (92.01, 99.78)

CB-Sparse vs. CB-Dense (52.70, 99.78) (73.31, 97.39) (81.98, 95.60)

CB-Part1 vs. CB-Part2 (57.84, 89.32) (70.66, 91.36) (70.22, 92.01)

UT-Sparse vs. UT-Dense (56.32, 97.77) (71.18, 90.20) (62.60, 94.47)

UT-Part1 vs. UT-Part2 (49.88, 88.25) (60.81, 90.09) (58.40, 92.51)

TABLE V. EFFECTS OF mc

mc coverage (%) accuracy (%) time (s)

50 47.08 88.45 33

200 56.48 88.27 66

800 57.75 88.19 164

2000 60.81 90.09 521

Thus, a large value of mc leads to a high time complexity as
well.

4) Effects of α: As we presented in Section V-A, in the
signal based similarity, each kernel cell emits a stimulus signal
which spreads out spatially with an attenuation factor α. Since
α is only related with the signal based similarity, to show the
effects of α, we evaluate the algorithm performance by only
utilizing the signal based similarity under the coverage equal to
90%. We set α to be 0 and 1− 10−30 respectively. Such two
values correspond to that the stimulus signal does not spread
out at all and the stimulus signal does not decrease almost
respectively. The results are shown in Table VII.

Such results essentially reflect the effects of the “kernel
cells”. When α = 0, the cells are independent (we do not
distinguish the kernel cells in such case). As we can see by
taking the relations of the cells into consideration (setting
a proper α > 0), the accuracy increases a lot in the hard
experiments (UT-Sparse vs. UT-Dense, UT-Part1 vs. UT-Part2).

5) Effects of Distance Values between Kernel Cells: As we
mentioned in Section V, the distance values between the kernel
cells play an important role in the signal based similarity. To
illustrate the effects of taking the distance into consideration,
we evaluate our algorithm with 3 experiments with different
settings. Recall that the signal based similarity in Equ.(3) is
calculated by

sigi = st(c1) +
∑

k∈K\{1}
st(ck) · (1 + fd(md(ck))).

In Setting A, we set fd(x) = 0, i.e., the signal based
similarity is unrelated with the distance values between the
cells. We use the default setting as in Table II as Setting B.
In Setting C, we replace the sigmoid function with a linear
function fd(x) = x to eliminate the diminishing marginal utility
property. Again, we compare the accuracies under the coverage
equal to 90%. The results are shown in Table VII

TABLE VI. EFFECTS OF α

Experiment
accuracy(%)

α = 0

accuracy(%)

α = 0.4

accuracy(%)

α ≈ 1

CN-Sparse

vs. CN-Dense
98.66 98.64 69.43

CN-Part1

vs. CN-Part2
99.58 99.59 98.68

CB-Sparse

vs. CB-Dense
94.25 94.37 76.50

CB-Part1

vs. CB-Part2
79.63 80.08 73.00

UT-Sparse

vs. UT-Dense
87.06 93.15 69.47

UT-Part1

vs. UT-Part2
69.18 72.34 47.50

TABLE VII. EFFECTS OF DISTANCES

Experiment Setting A Setting B Setting C

CN-Sparse

vs. CN-Dense
98.32 98.64 98.52

CN-Part1

vs. CN-Part2
99.48 99.59 98.86

CB-Sparse

vs. CB-Dense
87.23 94.37 86.36

CB-Part1

vs. CB-Part2
79.94 80.08 63.05

UT-Sparse

vs. UT-Dense
76.00 93.15 86.14

UT-Part1

vs. UT-Part2
68.53 72.34 57.79

From Table VII, we can see that for the two easiest
experiments, the distances between the cells do not effect on
the accuracy much. However, for the hardest two experiments,
the accuracy increases dramatically when the distance values
and the diminishing marginal utility property is taking into
consideration.

C. Comparisons with Other Algorithms

In this section, we use the default setting as shown in
Section VI-B and compare our algorithm with the other existing
methods.

We first compare the performance of the signal based
similarity with the existing measures. As we mentioned in
Section I, since our trajectories we deal with are sampled at
very different rate, the sparse trajectories may contain less than
one point per day. Even the time span of the trajectories can

986

(a) CN-Sparse vs. CN-Dense (b) CN-Part1 vs. CN-Part2 (c) CB-Sparse vs. CB-Dense

(d) CB-Part1 vs. CB-Part2 (e) UT-Sparse vs. UT-Dense (f) UT-Part1 vs. UT-Part2

Fig. 6. Error rates of different similarity measures under the same coverage

TABLE VIII. PERFORMANCE COMPARISON FOR AUI

Experiment AUI SIG WJS k-BCT MHD

CN-Sparse vs. CN-Dense (coverage = 59.72%) 99.94% 99.84% 99.08% 98.80% 78.13%

CN-Part1 vs. CN-Part2 (coverage = 88.35%) 99.80% 99.57% 99.41% 98.20% 70.39%

CB-Sparse vs. CB-Dense (coverage = 73.31%) 97.39% 97.53% 70.87% 91.59% 87.37%

CB-Part1 vs. CB-Part2 (coverage = 70.66%) 91.36% 81.67% 80.43% 65.93% 62.40%

UT-Sparse vs. UT-Dense (coverage = 72.84%) 95.63% 95.20% 76.02% 71.48% 87.32%

UT-Part1 vs. UT-Part2 (coverage = 60.81%) 90.09% 80.96% 74.97% 61.38% 50.89%

be disjoint. Most prior work is not available for our problem
setting. Here we compare with two feasible existing similarity
measures. 2

Adelfio et al. [38] extended Hausdorff distance and proposed
the modified Hausdorff distance (MHD). For two trajectories
TA and TB , MHD is defined as:

MHD(TA, TB) =
1

|TA|
∑

pa∈TA

min
pb∈TB

Dis(pa, pb)

Chen et al. [35] present a similarity measure called k
Best Connected Trajectories (k-BCT). Specifically, for two
trajectories TA and TB , k-BCT is defined as:

k-BCT(TA, TB) =
∑

pa∈TA

e−minpb∈TB
Dis(pa,pb).

To make a fair comparison, we adjust the threshold value
for each measure and compare the error rates under the same
coverage. The results are shown in Figure 6.

2These methods are available but not designed for our setting.

We then show the performance evaluation of AUI. We set
the thresholds θSIG = 12 and an extremely small threshold
θWJS = 0.005. In Table VIII, we label the coverage of AUI
and compare the performance for the other similarity measures
under the same coverage.

D. Discussions

Based on the experiment results, we can easily see the
advantages of the signal based similarity and AUI in our
problem.

For all the 6 experiments, the signal based similarity
outperforms other measures significantly. As we can see, the
weighted Jaccard similarity performs well when the trajectories
are sampled at similar rates (Figure 6(b), Figure 6(d), Figure
6(f)). However, it causes high error rate when the trajectories
are sampled at very different rates (Figure 6(a), Figure 6(c),
Figure 6(e)). The reason is that the weighted Jaccard similarity
essentially measures the similarity of the spatio-temporal point
sets. When the trajectories are sample at very different rates,
the point sets of the same user can become totally distinct.
On the other hand, MHD and k-BCT capture the geometrical
distance features between the trajectories. These two measures

987

are not too sensitive to the sample rates. Nevertheless, when
the trajectories have significant overlaps, it is hard to identify
the users by only using the distance features (Figure 6(d),
Figure 6(e), Figure 6(f)). Furthermore, we stress that for the
trajectories distributed on a vast spatial domain, there usually
exist several points which are far from each other (e.g., the
spatio-temporal points in city B and city C in Figure 1(c)). For
such case, the modified Hausdorff distance can be very large
which is easy to lead to mistakes (Figure 6(a) and Figure 6(b)).

Despite the signal based similarity out performs the other
measures for all the experiments. For real applications, it is hard
to assign a proper threshold value or determine the coverage
in advance. For example, by setting θSIG = 0.95, it is enough
to achieve an accuracy of 97.90% under the coverage of 90%
for the experiment CN-Sparse vs. CN-Dense. However, for the
experiment UT-Part1 vs. UT-Part2, we need to set the threshold
θSIG equal to 10.95 to achieve the same coverage and the
accuracy is only 71.40%. AUI could determine the coverage
according to the cohesion of the data set. As show in Table 4,
for the easiest case (CN-Part 1 vs. CN-Part 2), AUI achieves
the coverage of 88.35% and the corresponding accuracy of
99.80%. For the hardest cases (UT-Sparse vs. UT-Dense and
UT-Part1 vs. UT-Part2), AUI covers only 72.84% and 60.81%
of the trajectories but much higher accuracies (95.63% and
90.09%) than the other measures under the same coverage.

VII. RELATED WORK

The studies of user identification focus on the concept of
uniqueness in human mobility. It has been shown that people
tend to visit places where they visited regularly in the past,
which we refer to as “significant places” [13], [23]–[25]. Zang
and Bolot [25] showed that given each individual’s top n
significant places with highest visiting frequencies, we can
uniquely identify a small subset of users from a very large-scale
anonymized dataset. Montjoye et al. [23] showed that the human
mobility retain highly unique even if we coarsen the location
points. We stress that these work investigated the uniqueness
or the user identification problem in a single mobility data set,
i.e., given several historical location points which are already
contained in the data set and retrieve the trajectories that match
the given points. Rossi et al. [36] presented a technique for
identifying users with previously unseen data, i.e., the location
points that are not included in the original data set used for
model training. We point out that in [36], the unseen data in their
experiment is sampled without replacement from the original
data set which differs from our problem. As we showed in
Section VI, their method does not handle the user identification
across heterogeneous data sources effectively. Furthermore, in
a related work, Crandall et al. [13] used sparse geo-tags in
social platforms to infer the social ties between different users.
They showed that the strength of social ties is highly correlated
with geographical co-occurrences of the users under various
spatial granularities.

The user similarity search problem aims to retrieve similar
user items from the entire database, based on the personal
traits extracted from their past behaviors, in our case, their
spatio-temporal mobility patterns. As we claimed in Section
I, user identification can be regarded as a special case of user
similarity search. An essential ingredient in most methods
is to define the similarity measure between a pair of user
trajectories. Considerable amount of definitions have been
proposed in the past. Most of them are extensions or variants

of traditional methods, including Dynamic Time Warping
(DTW) [32], Longest Common Subsequence (LCSS) [26], Edit
Distance on Real Penalty (ERP) [31], Edit Distance on Real
Sequences (EDR) [30], etc. In addition, Li et at. [27] proposed
a hierarchical graph based similarity measurement (HGSM)
which takes into account both sequential and hierarchical
property of geographic locations in user trajectories. These
measures utilized the temporal closeness of trajectories, i.e.,
two trajectories are similar if they co-occurred in approximately
the same place at approximately the time. Chen et al. [35]
defined a trajectory similarity measure called k Best Connected
Trajectories (k-BCT) based on the spatial distance and the order
constraint in trajectory. Since k-BCT aims to search trajectories
from a database using a small set of locations as queries, directly
deploying it could lead to high error rate when the trajectories
have a significant overlap as we showed in Section VI. We
refer the interested readers to a recent survey [39] for more
details about user similarity search. In the recent research
[33], Ranu et al. studied the similarity measure of trajectories
under inconsistent sampling rates. They formulated a robust
distance function called Edit Distance with Projections (EDwP)
to match trajectories under inconsistent and variable sampling
rates. However, their method needs to infer the movement of
users such as the speed which is not available in our problem.

VIII. CONCLUSION

In this paper, we study the method of identifying users from
heterogeneous data sources. In our problem, the trajectories in
mobility data that we deal with are sampled at very different
rates and extremely noisy. To address this challenge, we
formulate the user identification problem over large scale
heterogeneous mobility data sets and present a MapReduce-
based framework called Automatic User Identification (AUI).
AUI is based on a novel similarity measure called the signal
based similarity. We conduct extensive experiments and show
that the signal based similarity significantly outperforms the
existing similarity measures for user identification problem.
Furthermore, we adopt a rejection strategy to reduce misidenti-
fication when the application scenarios are sensitive to error
cases. The experimental results show that our rejection strategy
can further improve the accuracy of our framework.

ACKNOWLEDGEMENT

This work was supported in part by the National Ba-
sic Research Program of China grants 2015CB358700,
2011CBA00300, 2011CBA00301, and the National NSFC
grants 61033001, 61361136003.

REFERENCES

[1] B. Krogh, O. Andersen, E. Lewis-Kelham, N. Pelekis, Y. Theodoridis,
and K. Torp, “Trajectory based traffic analysis,” in Proceedings of
the 21st ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2013, pp. 536–539.

[2] P. H. Li, M. L. Yiu, and K. Mouratidis, “Historical traffic-tolerant paths
in road networks.” ACM Conference on Advances in Geographic
Information Systems (ACM SIGSPATIAL), 2014.

[3] I. Hefez, Y. Kanza, and R. Levin, “Tarsius: A system for traffic-aware
route search under conditions of uncertainty,” in Proceedings of the 19th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2011, pp. 517–520.

[4] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 17, no. 6, pp. 734–749, 2005.

988

[5] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis, “User
oriented trajectory search for trip recommendation,” in Proceedings of
the 15th International Conference on Extending Database Technology.
ACM, 2012, pp. 156–167.

[6] J.-D. Zhang, C.-Y. Chow, and Y. Li, “Lore: Exploiting sequential
influence for location recommendations,” in Proceedings of the 22nd
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2014, pp. 103–112.

[7] E. H.-C. Lu, C.-Y. Chen, and V. S. Tseng, “Personalized trip recom-
mendation with multiple constraints by mining user check-in behaviors,”
in Proceedings of the 20th International Conference on Advances in
Geographic Information Systems. ACM, 2012, pp. 209–218.

[8] H. Su, K. Zheng, J. Huang, H. Jeung, L. Chen, and X. Zhou,
“Crowdplanner: A crowd-based route recommendation system,” in Data
Engineering (ICDE), 2014 IEEE 30th International Conference on.
IEEE, 2014, pp. 1144–1155.

[9] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes from
trajectories,” in Data Engineering (ICDE), 2011 IEEE 27th International
Conference on. IEEE, 2011, pp. 900–911.

[10] H. Su, K. Zheng, K. Zeng, J. Huang, S. Sadiq, N. J. Yuan, and X. Zhou,
“Making sense of trajectory data: A partition-and-summarization ap-
proach,” in Data Engineering (ICDE), 2015 IEEE 31st International
Conference on. IEEE, 2015, pp. 963–974.

[11] J. Dai, B. Yang, C. Guo, and Z. Ding, “Personalized route recommen-
dation using big trajectory data,” in Data Engineering (ICDE), 2015
IEEE 31st International Conference on. IEEE, 2015, pp. 543–554.

[12] E. Spertus, M. Sahami, and O. Buyukkokten, “Evaluating similarity
measures: a large-scale study in the orkut social network,” in Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, pp. 678–684.

[13] D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher,
and J. Kleinberg, “Inferring social ties from geographic coincidences,”
Proceedings of the National Academy of Sciences, vol. 107, no. 52, pp.
22 436–22 441, 2010.

[14] P. Bouros, D. Sacharidis, and N. Bikakis, “Regionally influential users
in location-aware social networks,” in Proceedings of the 22nd ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2014, pp. 501–504.

[15] Y. Kanza, E. Kravi, and U. Motchan, “City nexus: discovering pairs of
jointly-visited locations based on geo-tagged posts in social networks,”
in Proceedings of the 22nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 2014, pp.
597–600.

[16] W. Kang, A. K. Tung, F. Zhao, and X. Li, “Interactive hierarchical
tag clouds for summarizing spatiotemporal social contents,” in Data
Engineering (ICDE), 2014 IEEE 30th International Conference on.
IEEE, 2014, pp. 868–879.

[17] J. Jiang, H. Lu, B. Yang, and B. Cui, “Finding top-k local users in
geo-tagged social media data.” ICDE, 2015.

[18] L. Chen, G. Cong, X. Cao, and K.-L. Tan, “Temporal spatial-keyword
top-k publish/subscribe,” in Data Engineering (ICDE), 2015 IEEE 31st
International Conference on. IEEE, 2015, pp. 255–266.

[19] B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. Sadiq, and X. Zhou,
“Approximate keyword search in semantic trajectory database,” in Data
Engineering (ICDE), 2015 IEEE 31st International Conference on.
IEEE, 2015, pp. 975–986.

[20] R. Karam, F. Favetta, R. Kilany, and R. Laurini, “Integration of similar
location based services proposed by several providers,” in Networked
Digital Technologies. Springer, 2010, pp. 136–144.

[21] R. Karam and M. Melchiori, “Improving geo-spatial linked data with
the wisdom of the crowds,” in Proceedings of the Joint EDBT/ICDT
2013 Workshops. ACM, 2013, pp. 68–74.

[22] S. Vert and R. Vasiu, “Relevant aspects for the integration of linked data
in mobile augmented reality applications for tourism,” in Information
and Software Technologies. Springer, 2014, pp. 334–345.

[23] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel,
“Unique in the crowd: The privacy bounds of human mobility,” Scientific
reports, vol. 3, 2013.

[24] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no. 7196, pp.
779–782, 2008.

[25] H. Zang and J. Bolot, “Anonymization of location data does not work:
A large-scale measurement study,” in Proceedings of the 17th annual
international conference on Mobile computing and networking. ACM,
2011, pp. 145–156.

[26] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar
multidimensional trajectories,” in Data Engineering, 2002. Proceedings.
18th International Conference on. IEEE, 2002, pp. 673–684.

[27] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma, “Mining
user similarity based on location history,” in Proceedings of the 16th
ACM SIGSPATIAL international conference on Advances in geographic
information systems. ACM, 2008, p. 34.

[28] H. Wang and K. Liu, “User oriented trajectory similarity search,” in
Proceedings of the ACM SIGKDD International Workshop on Urban
Computing. ACM, 2012, pp. 103–110.

[29] J. J.-C. Ying, E. H.-C. Lu, W.-C. Lee, T.-C. Weng, and V. S. Tseng,
“Mining user similarity from semantic trajectories,” in Proceedings of
the 2nd ACM SIGSPATIAL International Workshop on Location Based
Social Networks. ACM, 2010, pp. 19–26.

[30] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search for
moving object trajectories,” in Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. ACM, 2005, pp.
491–502.

[31] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,”
in Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30. VLDB Endowment, 2004, pp. 792–803.

[32] B.-K. Yi, H. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” in Data Engineering, 1998.
Proceedings., 14th International Conference on. IEEE, 1998, pp.
201–208.

[33] S. Ranu, P. Deepak, A. D. Telang, P. Deshpande, and S. Raghavan,
“Indexing and matching trajectories under inconsistent sampling rates,”
in Data Engineering (ICDE), 2015 IEEE 31st International Conference
on. IEEE, 2015, pp. 999–1010.

[34] E. Frentzos, K. Gratsias, and Y. Theodoridis, “Index-based most similar
trajectory search,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on. IEEE, 2007, pp. 816–825.

[35] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching
trajectories by locations: an efficiency study,” in Proceedings of the
2010 ACM SIGMOD International Conference on Management of data.
ACM, 2010, pp. 255–266.

[36] L. Rossi and M. Musolesi, “Spatio-temporal techniques for user
identification by means of gps mobility data,” EPJ Data Science, vol. 4,
pp. 1–16, 2015.

[37] S. Ioffe, “Improved consistent sampling, weighted minhash and l1
sketching,” in Data Mining (ICDM), 2010 IEEE 10th International
Conference on. IEEE, 2010, pp. 246–255.

[38] M. D. Adelfio, S. Nutanong, and H. Samet, “Similarity search on
a large collection of point sets,” in Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2011, pp. 132–141.

[39] Y. Zheng, “Trajectory data mining: an overview,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 6, no. 3, p. 29, 2015.

989

